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A traditional toolbox for statistics

hypothetical value

or
Binomial test

Type of Data
Goal Measurement Rank, Score, or Measurement | Binomial Survival Time
( 6 (
Population) Population) Outcomes)
Describe one group Mean, SD Median, interquartile range | Proportion | Kaplan Meier survival
curve
Compare one group toa One-sample ttest | Wilcoxon test Chi-square

Predict value from another
measured variable

Simple linear
regression
or

Nonlinear
regression

Nonparametric regression™

Simple
logistic
regression*

Compare two Unpaired t test Mann-Whitney test Fisherstest | Log-rank test or
unpaired groups (chi-square | Mantel-Haenszel*
for large
samples)
Compare two paired groups | Paired t test Wilcoxon test McNemar's | Conditional
test proportional hazards
regression*
Compare three or more One-way ANOVA | Kruskal-Wallis test Chi-square | Cox proportional
unmatched groups test hazard regression**
Compare three or more Repeated- Friedman test Cochrane 0** | Conditional
matched groups measures ANOVA proportional hazards
regression**
Quantify association Pearson correlation | Spearman correlation Contingency
between two variables coefficients™

Cox proportional
hazard regression*

Predict value from several
measured or binomial
variables

Multiple linear
regression*

or

Multiple nonlinear
regression**

Multiple
logistic
regression*

Cox proportional
hazard regression*
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A traditional toolbox for statistics

Table 1.1: A few choices of statistical target parameter as implied by some common regression

models.
Outcome Type Model (or Method) Statistical Parameter
Continuous ¥ € R linear regression Difference of means
Continuous and positive ¥ € R™ log-linear regression Ratio of means
Binary Y € {0,1} logistic regression Odds ratio
Count Y € Z* Poisson regression Ratio of means
Survival time 7' = min(Ty, T¢) Cox regression Hagzard ratio

The choices given in Table 1.1 are not exhaustive, and several variations on each of the modeling
approaches exist, but, in standard practice, even their off-the-shelf varieties are common. Despite
their popularity, how does the flow of logic that led us here hold up to scrutiny? In effect, using
Table 1.1 as a guide, we have committed to choosing the target of inference based on the type of the
outcome variable Y and an inflexible choice of regression model, the latter of which sharply restricts
the set of candidate statistical parameters. This model-based or model-forward approach limits the
answers we are able to seek based not on the scientific question of interest, but instead on the type
of data and the limitations of common regression models.

® Traditional: Data + Model — Question (parameter)
e Agnostic: Question (parameter) + Data — Model
® Which of these is better aligned with the scientific process?
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Performance of traditional tools
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The “art” of statistical inference?
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False-Positive Psychology: Undisclosed
Flexibility in Data Collection and Analysis
Allows Presenting Anything as Significant
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i The Statistical Crisis in Science
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Data-dependent analysis—a “garden of forking paths”— explains why many
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TL answers statistical questions rooted in causality
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Obtain inferenc Best Statistical
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Public health and medicine use real-world data
(RWD) for insight and evidence
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Courtesy of "FDA Real-World Evidence Program" Webinar by John Concato on 4th August 2021



TL addresses statistical challenges with RWD
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TL for real-world evidence (RWE) evaluation

Randomized/interventional

Traditional randomized trial,

using elements of RWD ith pragmatic elements)

Selected outcomes
identified using
EHR/claims data, etc.

RWD to assess
enroliment criteria
& trial feasibility

using electronic case

forms or EHR or claims
ta (or combination)

RWD to support
site selection

Mobile technology
used to capture
supportive endpoints

RWD Challenges

0 Selection bias

Q Intercurrent events

Q Informative missingness

QO Treatment by indication

Q High dimensional covariates

0O Outcome measurement error

Q Statistical model misspecification

0 Differences between external
controls and single trial arm RCT

Targeted Learning
path supports regulatory
decision making

in clinical practice settings

d/ N ized/

Non-r

inter

Observational
studies

Observational cohort
study

Single-arm study
with external
control arm

Case-control study
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v Roadmap for causal and statistical
inference

v Realistic statistical model

v Statistical estimand approximates
answer to causal question

v Flexible estimation and dimension
reduction with Super Learner

v Model-free sensitivity analysis

v Generate RWE with confidence
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TL is a subfield of statistics

Mark J. van der Laan
Sherri Rose

Targeted Learning

van der Laan & Rose, Targeted
Learning: Causal Inference for

Observational and Experimental

Data. New York: Springer, 2011.

Mark J. van der Laan
Sherri Rose

Targeted Learning
in Data Science

van der Laan & Rose, Targeted
Learning in Data Science: Causal
Inference for Complex Longitudinal
Studies. New York: Springer, 2018.

Targeted Learning in R with the tlverse
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Some applications of TL in the real world
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Le NEW ENGLAND JOURNAL of MEDICINE DOL 101175 6773 15845
METHODS ARTICLE

Mark van der H
Laan and
Nima Hejazi

HIV Testing and Treatment with the Use of a
Community Health Approach in Rural Africa

Robust Machine Learning Variable

ThC.AfI’t of D.V. Halir, LB, Balzer, E.D. Charlebois, T.D. Clark, D. Kiarisiima,
Statistics S e L e e S Importance Analyses of Medical

F. Mwang, Olilo, D. Black, K

TL in Action M. Getah

J
H. Thirumurthy, C. Kos d
E. Mugoma W: H. Chen, L. Rooney

TL Roadmap M. van der Laan, C.R. Cohen, E. Bukusi, M.R. Kamya, and M. Petersen

Describe study

Conditions for Health Care Spending

Sherri Rose

Sy & i The NEW ENGLAND JOURNAL of MEDICINE

statistical model

Define estimand “ ORIGINAL ARTICLE H THE LANC ET AN

Causal estimand . . 3
Statistical estimand : . . . Respl ratory MedICIne “t“: |
Genetic Diversity and Protective Efficacy Volure 3, sue L, January 2015, Pages 4252 s

Construct estimator of the RTS,S/AS01 Malaria Vaccine

Obtain inference

D.E. Neafsey, M. Juraska, T. Bedford, D. Benkeser, C. Valim, A. Griggs, M. Lievens Articles

S e O Mante. K P et P Belor ). Bkt 1. Bl KM Comrel Mortality prediction in intensive
Advanced TL i A S R A care units with the Super ICU
Collaborative TMLE N.J. Lennon, J. Lusingu, K. Marsh, F. Martinson, .T. Molel, E.L. Moss, P. Njuguna,

o e T G Learner Algorithm (SICULA): a
Longitudinal TMLE B B b Gl s b o & e population-based study
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Better clinical decisions from observational data
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Targeted learning in real-world
comparative effectiveness research with
TL in Action time-varying interventions

Romain Neugebauer,*" Julie A. Schmittdiel® and
Mark J. van der Laan”
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Standard methods: No benefit to more Targeted Learning: More aggressive intensification
aggressive intensification strategy protocols result in better outcomes




TL for optimal treatment variable importance in
meta-analysis of childhood development studies
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Evaluating counterfactual HIV infection risk after
shifting vaccine-induced immune response markers

TML estimates of mean counterfactual HIV-1 infection risk under shifted CD8+ polyfunctionality
with pointwise confidence intervals and summarization via working marginal structural model (aTMLE =-0. 013)

0.10

Risk of HIV-1 infection

0.00
-2 -1 0 1 2
Posited change in standardized CD8+ polyfunctionality (sd units)

Hejazi et al. "Efficient nonparametric inference on the effects of stochastic
interventions under two-phase sampling, with applications to vaccine efficacy
trials” Biometrics (2021). 10.1111/biom.13375
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Evaluating COVID-19 vaccine efficacy after shifting
immune correlates of protection

Stoch. Interv. VE vs. COVID-19 (4 weeks post-vaccination with 100 days follow-up)
After 2 doses of MRNA-1273

99%:

©
8
ES

Stoch. Interv. VE
o
8
g

50%:

30%

10%

LR T R O O R
GM Titer of Pseudovirus—nAb ID50 (IU50/ml) 4 weeks post-vaccination

4 mu gamma alpha M D614G
SARS-CoV-2 variant  kappa  iota epsilon ® hypothetical
beta delta lambda

Hejazi et al. “Stochastic interventional approach to assessing immune correlates
of protection: Application to the COVE mRNA-1273 vaccine trial” 1JID (2023).



Evaluating (in)direct effects of adaptive dosing
strategies for OUD

Targeted Adaptive prescription strategies directly lower risk of OUD relapse
Learning based on estimated stochastic interventional (in)direct effects
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Variable Importance Hejazi et al., “Nonparametric causal mediation analysis for stochastic
interventional (in)direct effects.” Biostatistics (2023).
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Estimating impacts on AKI of delay-in-intubation
policies

B
Estimated AKI Incidence via SDR Estimated AKI Incidence Difference via SDR
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0.05
~0.04
0.00-
0 i 2 3 43 78 9 10 N 12 13 14 0 33 405 78 9 10 112
Days since hospital admission Days since hospital admission

Treatment strategy ® Delayed intubation (MTP) @ No intervention

Diaz, Hoffman, and Hejazi, “Causal survival analysis with longitudinal modified
treatment policies.” LiDA (2024).
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A roadmap for learning from data
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Step 1: What is the data-generating experiment?
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Target population of interest
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Observed data structure

Three multi-national RCTs assessing
impact of corticosteroids on mortality
among septic shock patients

Pooled sample of n = 1,300 adults in septic shock

steroid 1-month

ENUN R-oCl sex treatment mortality

21 65 F 1 1
223 28 F 0 0
19.4 49 F 1 0

24 77 M 1 0



Directed Acyclic Graph (DAG)
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Step 2: What is known about stochastic relations
of the observed variables?
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What happens when the statistical model is
misspecified (i.e. does not contain Py, the DGP)?
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Step 3a: What is the target causal estimand that
we aim to identify from the data?
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Proportion of subjects in the population of interest
that would have died had they all received steroids
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Proportion of subjects in the target population that
would have died had they all not received steroids
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Causal target parameters are functions of the full
data under the intervention(s) of interest

Targeted
Learning 4 STEP 1: \

Mark van d DESCRIBE What is the causal risk ratio in
Laan and EXPERIMENT mortality between treatment groups?
Nima Hejazi
STEP 2: P(Y, =1
SPECIFY W ;= ("1 )
STATISTICAL MODEL causal = —
P(Y, =1)
STEP 3:
DEFINE STATISTICAL
QUERY w, w, Ww; A Y Yi
: STEP 4:
Causal estimand CONSTRUCT 2’] 65 F 1 1 1
ESTIMATOR
223 28 F 0 0 ?
STEP 5:
OBTAIN 19.4 49 F 1 0 0
INFERENCE 24 77 M 1 0 0
STEP 6:
MAKE SUBSTANTIVE

CONCLUSION



Causal identifiability assumptions must hold in
order to interpret the estimate causally

Targeted
Learning 4 STEP 1: \

Mark van der DESCRIBE What is the causal risk ratio in
Laan and EXPERIMENT mortality between treatment groups?
Nima Hejazi
STEP 2: =
SPECIFY W ;= Py =1)
STATISTICAL MODEL causal — —
P(Y, =1)
STEP 3:
DEFINE STATISTICAL , , ,
QUERY What’s needed to identify
from the observed data?
STEP 4: l/}causal
CONSTRUCT .
ESTIMATOR 1. No unmeasured confounding /
randomization / exchangeability
STEP 5:
OBTAIN
INFERENCE
\\’r,n*\rm\‘rﬂ T!H'E STEP 6:
e MAKE SUBSTANTIVE

CONCLUSION



Some causal identifiability assumptions are also
necessary for well-defined statistical esitmation

Targeted
Learning 4 STEP 1: \

Mark van der DESCRIBE What is the causal risk ratio in
Laan and EXPERIMENT mortality between treatment groups?
Nima Hejazi
STEP 2: =
SPECIFY W ;= P(Y; =1)
STATISTICAL MODEL causal — —
P(Y, =1)
STEP 3:
DEFINE STATISTICAL , , .
QUERY What’s needed to identify
from the observed data?
STEP 4: l/}causal
CONSTRUCT .
ESTIMATOR 1. No unmeasured confounding /
randomization / exchangeability
STEP 5:
OBTAIN o _
INFERENCE 2. Positivity / experimental treatment
STEP 6: assignment (ETA) assumption
MAKE SUBSTANTIVE

CONCLUSION



Targeted
Learning

Mark van der

Laan and
Nima Hejazi

Define e

Causal estimand

Statistic

e rative TMLE
HAL and A-TMLE
nal TMLE

4 STEP 1: \

DESCRIBE
EXPERIMENT

STEP 2:
SPECIFY
STATISTICAL MODEL

STEP 3:
DEFINE STATISTICAL
QUERY

STEP 4:
CONSTRUCT
ESTIMATOR

STEP 5:
OBTAIN
INFERENCE

STEP 6:
MAKE SUBSTANTIVE

CONCLUSION

Identification formula from g-computation

= Ystar

_ P(Y; =1)

wcausal - m
_LwPY =1A=1LW =w)P(W =w)
S YL,POY=1A=0,W =w)P(W =w)



Step 3b: What is the target statistical estimand
that we will learn from the data?

Targeted

Learning 4 STEP 1: \
Mark van der DESCRIBE

Pt EXPERIMENT
Nima Hejazi What is the risk of mortality between
SSJEECPI IEY treatment groups when adjusting for

STATISTICAL MODEL covariates?

STEP 3: 1/) _
DEFINE STATISTICAL stat —
QUERY

STEP 4: XwPY =1A=1W =w)P(W =w)

;tatistwc;:‘:;(ir;and CONSTRUCT P Y = 1 A = O, W = P W =
: ‘, ESTIMATOR Zw P( | w)P( w)

STEP 5:
OBTAIN
tive TMLE INFERENCE

HAL and A-TMLE
Longitudinal TMLE

STEP 6:
MAKE SUBSTANTIVE
CONCLUSION




Step 4: How should we estimate the target
estimand?

Targeted

Learning STEP 1:
Mark van der DESCRIBE

Laan and EXPERIMENT
Nima Hejazi
STEP 2: . .. . ]
SPECIFY Statistical properties to consider

STATISTICAL MODEL

Substitution / plug-in
Valid inference

STEP 3:
‘ DEFINE STATISTICAL
e QUERY

Efficiency
STEP 4:
CONSTRUCT

s i T Ability to optimize finite sample

performance

Sensitiviy analy STEP 5:
OBTAIN

tive TMLE INFERENCE

Longitudinal TMLE STEP 6:
MAKE SUBSTANTIVE

\_ CONCLUSION /




Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Why plug-in estimation?

Consider a data unit O = (W, A, Y), where O ~ Py € M
for Py the data-generating distribution in a model M.

A plug-in estimator W(P,) is based on the parameter
mapping, where the target parameter is W(Py) and P, is
an estimator of P.

V(Py) = Eo{Eo[Y | A=1, W] —Eo[Y | A= 0, W]}, the
ATE functional, can be approximated by recognizing that:
® Components of Py that impact the plug-in estimator are

the conditional mean Qp(A, W) = E[Y | A, W] and the
marginal distribution of W, Qo w.
® Thus, the plug-in estimator depends on estimates of these:
Qn(AW)=K[Y | A, W] and Q,w = Po(W = w).
By construction, plug-in estimators remain within the
bounds of the parameter space.



Targeted Maximum Likelihood Estimation (TMLE)

Targeted
Learning 4 STEP 1: \

Mark van der DESCRIBE
e EXPERIMENT
Nima Hejazi
STEP 2:
SPECIFY TMLE
STATISTICAL MODEL
STEP 3: @ Initial estimation of P[Y = 1|4, W]
DEFINE STATISTICAL : . .
QUERY with super (machine) learning
STEP 4: @ Updating initial estimate to acheive
e CONSTRUCT . . .
e ESTIMATOR optimal bias-variance trade-off for 1;4;
S — STEP 5:
OBTAIN
e INFERENCE TMLE estimates are optimal:
B STEP 6: plug-in, efficient, unbiased, finite sample robust
MAKE SUBSTANTIVE

\_ CONCLUSION /



Initial estimates via super learner

Targeted

Learning
Mark van der LIBRARY COMPETITION WINNER

Laan and
Nima Hejazi

Cross-validated
performance of
learners + ensembles
Linear model T 7 3
BART 2
Describe study Random Forest =
Specify a realistic N | P
statistical model eura
Define estimand Network Lasso Leaming s Training
Causal estimand HAL © 6 ©
Statistical estimand Regression splines =
Construct estimator
Obtain inference o
Sensitivity analysis °
j’Validation
2 Set

Collaborative TMLE Fold 1

HAL and A-TMLE
el Hugely advantageous when coupled with NLP-derived covariates with EHR

Variable Importance



Cross-validation to choose a winner

Targeted

Learning
Mark van der
Laan and 2
Nima Hejazi
The Art Of
Statistics
TL in Action
TL Roadmap
Describe study
Specify a realistic
statistical model
Define estimand
Causal estimand 7
Statistical estimand
Construct estimator
Obtain inference
Sensitivity analysis
Advanced TL
Collaborative TMLE
HAL and A-TMLE

Longitudinal TMLE

Variable Importance Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold 10

Conclusion




Coding exercise: Super learning with s13

Targeted

Learning https://tlverse.org/catalyst2024-workshop/sl13.html

Mark van der
Laan and
Nima Hejazi

rative TMLE

HAL and A-TMLE
Longitudinal TMLE

Variable Importanc


https://tlverse.org/catalyst2024-workshop/sl3.html

Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Statistical estimand
Construct estimator

Obtain inferen

HAL and A-TMLE
Longitudinal TMLE

Tip: Include the Highly Adaptive Lasso (HAL) as a
candidate in the SL library

® First estimator to guarantee asymptotically efficient
estimation of any pathwise differentiable estimand! (e.g.,
average causal effect or treatment-specific survival),
without enforcing local smoothness conditions.

® Mild assumptions, which hold in most practical
applications.

® Regularization step can be implemented with standard
Lasso software (e.g., glmnet).

e Converges to true function at rate n=1/3(log n)?/2.

® Accommodates a variety of function space specifications.

1 An estimand that is a weakly differentiable functional of the density of
the data, the case for most causal inference estimands under positivity.



Targeted
Learning

Mark van der

Laan and
Nima Hejazi

escribe study

Specify a realistic

statistical model

Define estimand

Causal estimand

Statistical estimand
Construct estimator
Obtain inference

Sensitivity analysis

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance

[llustration in Low Dimensions

[lwollv = 16.0
— M,=134
-— M=48
-e M=352 £y

I N 1 Y I W1
| | | | |

-4 -2 0 2 4



Targeted
Learning

Mark van der

Laan and
Nima Hejazi

Define estimand

stimand
ruct estimator
Obtain inference

Sensitivity analysis

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

ble Importanc

TMLE: Targeting by following a path of maximal
change in target estimand per unit likelihood

TMLE with Universal Least Favorable Submodel (n=400)

Average Treatment Effect

W(Po)

Estimate

Initial
= Truth

Update (correct)
== Update (wrong)

~ Change in log likelihood



TMLE Example for the ATE functional

Targeted

Learing ¢ Consider again O = (W, A, Y) where O ~ Py € M.
Manand © V(Po) =E{E[Y | A=1, W] -E[Y [A=0, W]}, the
Nimal Hejazi ATE functional, has a plug-in estimator:

W(Qn) = %Z{Qn(la W) - On(ov W)} )
i=1

- where Q,(a, W) = IAE[Y | A=a, W]
® The TMLE based on this plug-in estimator is
1~ >
V(@) = 3@, W) - Bifo, W)}
Obtain inference I:].

e where Q* is an update of the initial estimate Q,(a, W)
HAL and ATMLE ® The update step uses a parametric fluctuation of the form

Longitudinal TMLE

Varial Inportan logit( @) = logit(@,) + eHn(A, W), where the form of
H,(A, W) depends on relevant efficiency theory.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Obtain

ative TMLE
HAL and A-TMLE
Longitudinal TMLE

TMLE Example for the ATE functional

® The update step uses a parametric fluctuation of the form
logit(Qy) = logit(Qn) + eHn(A, W)

* Ha(A, W) = {I(A=1)/gn(W)}—{I(A=0)/(1-ga(W))},
a weight in the efficient influence function (EIF) of regular
asymptotically linear (RAL) estimators of W(Pg) wrt M.

® ¢, is a maximum likelihood estimator of ¢, so that the
TMLE is W(P}), where PX = P%(¢,).



Analysis of TMLE (vdL, Rubin, 2006)

Targeted

Learning ® Construct initial estimator P,; determine a least favorable
Mark van cer path {P, . : e € (—0,)} C M through P, with score D
Nima Hejazi at e = 0

® Compute MLE €, = arg max. P,L(P, ), where L(P) is a
valid loss function so that W(argminp PoL(P)) = V(Po).
® Let P, =P,.,. The TMLE is given by V(P},).
i : e If the mapping V() is pathwise differentiable,
W(P};) — W(Po) = (Pn — Po)Dp. + R(P}, Po), with
R(P, Py) = V(P) — V(Py) — (P — Py)D} an exact
second-order remainder; assume R(P}, Py) = oP(nfl/Z).

® Use super learner to obtain initial estimator P, then the
e TMLE W(P%) will be an asymptotically efficient estimator

HAL and A-TMLE

Longadial THLE of W(Py) under regularity conditions.



Asymptotic Linearity of the TMLE

Targeted

Learning ® The TMLE W(P}) is a RAL estimator, from which it
Mark van der follows that its difference from W(Py), the truth, can be
Nima Hejazi approximated by an average of i.i.d. RVs, the EIF, of O:

WPy~ w(Po) ~ 1 S 1C(PO)(0)
i=1

Descrie s where IC(Pp)(O) is the EIF at Py € M.
el ® Asymptotic linearity of W(P}) implies a normal sampling

distribution of the TMLE (by the CLT):

Va(W(PE) — W(Po)) & N(0,02)

e where 02 = V(IC(Py)(0)) is the asymptotic variance of
HAL and A-TMLE the EIF at POEM

Longitudinal TMLE

Varial Ineran ® IC(Pp)(O) depends on both (go, Qo), the source of the
TMLE update’s dependence on gp.




How should we approximate the sampling
distribution of our estimator?

Targeted
Learning 4 STEP 1: \

Mark van der i Due to targeting (step @), the TMLE behaves as
Laan and
Nima Hejazi the sample mean of efficient influence function
STEP 2:
SPECIFY
STATISTICAL MODEL
Previous Meta
STEP 3: 32RCT
DEFINE STATISTICAL
S QUERY
‘ ine STEP 4: Previous Meta | |
o CONSTRUCT SIECT
R ESTIMATOR
Obtain inference
Senstvty analyss STEP 5:
TMLE M
OBTAIN e
INFERENCE
o HT‘”F STEP 6: 038 09 1.0 111
MAKE SUBSTANTIVE Relative Risk for Mortality

\_ CONCLUSION /



Coding exercise: TMLE with tmle3

Targeted

Learning https :
Markvander  //tlverse.org/catalyst2024-workshop/tmle3.html

Laan and
Nima Hejazi

rative TMLE

HAL and A-TMLE
Longitudinal TMLE

Variable Importanc


https://tlverse.org/catalyst2024-workshop/tmle3.html
https://tlverse.org/catalyst2024-workshop/tmle3.html

Arriving at the substantive conclusion

Targeted

Learning . . . . P .
( STEP 1: \ Investigate causal bias with sensitivity analysis
Mark van der DESCRIBE
N%;Z"Haer}gzi EXPERIMENT Causal bias: Gap between estimate and truth due to violations
of any of the causal assumptions (e.g., unmeasured confounding)*
STEP 2: True causal quantity, ¥ aysa:
SPECIFY
STATISTICAL MODEL Estimated statistical quantity in Study 1, True statistical quantity in Study 1
R Y
STEP 3: WD | y / |
DEFINE STATISTICAL Study 1 I ! )
. QUERY Random variation
al mode
stimand STEP 4: Perar Vérar
) CONSTRUCT RWD —eo—o
. ESTIMATOR Study 2 N l‘-r'\_Yi
Obtain inference Causal bias
Sensitivity analysis STEP 5:
OBTAIN
Collaborative TMLE INFERENCE Sensitivity Analysis: Model-free assessment of how
HAL and A-TMLE reasonable departures from causal assumptions would impact
Longitudinal TMLE STEP 6: study findings
e MAKE SUBSTANTIVE

\_ CONCLUSION / » ) , o
* Sensitivity analysis can be extended to incorporate statistical bias



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Define estimand
Causal estimand

Statis mand

Construc

Obtain inference

Sensitivity analysis

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance

TL-based non-parametric sensitivity analysis: RCT

with 25% LTFU

-5.42, TMLE+SL
-6.10, unadjusted

~ Estimates and 95% confidence intervals under assumed levels of causal bias
o .. NoEffect
:’ T
E v T II IR AR
E Targeted Estimate - TTTTTTTT
o T li N
| 1=
. Difference after adjusting
" for bias due to measured
2 L a Estimate and 95% CI confounders = 0.68
from main analysis

r T T T T T T T T T T T T T T T T
-5x -45x -4x -35x -3x -25x -2x -1.5x -1x -0.5x Ox 05x 1x 15x 2x 25x 3x

Assumed causal bias relative to difference b dj d and

T T T 1
35x 4x 45x 5x
d estimates

Courtesy of “Targeted-Learning Based Statistical Analysis Plan” Webinar by Susan Gruber on 28 April 2021



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Describe study

Specify a realistic
statistical model

Define estimand
Causal estimand

Statistical estimand

Construct estimator
Obtain inference

Sensitivity analysis

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance

TL-based non-parametric sensitivity analysis:
Safety analysis example

Relative Risk Estimate

Relative risk estimates and 95% confidence intervals under assumed levels of causal bias

3.0

25

20

05

0.0

—
1.08, TMLE+SL
—— No adverse effect
L= 0.87, Unadjusted
e
—_ Estimate
and 95% CI
from main
{ analysis
< >
>

<

-5x —4.5x —4x -3.5x -3x -2.5x -2x =1.5x =1x -0.5x Ox 0.5x 1x 1.5x 2x 25x 3x 3.5x 4x 4.5x 5x
Assumed causal bias relative to difference between adjusted and unadjusted estimates



Possibility to refine question of interest and inform
future studies

Leaming What subgroup of patients in septic
Mark van der shock benefit from corticosteroids?
Nli_na'laanHaer}:zi

Overall

Stress Test
Responders

Sensitivity analysis

Stress Test
Non-responders

0.8 1.0 1.2



Outcome blind simulations to a priori define
TMLE: Wyss et al., 2023

Targeted
Learning

Mark van der
Laan and

inalbsiaa Step 4. Estimation and Inference using
TMLE + SL

TMLE software default settings are robust across many
situations, but not optimized for your analysis

Recommendation

Compare coverage, type | error, power for different
specifications using outcome blind simulations,

or plasmode simulations based on external data
Sensiivity analysis (pilot, Phase 1) sharing key features with your data

Collaborative TMLE
HAL and A-TMLE
nal TMLE

R. Wyss et al. (2023). Targeted Learning with the Collaborative
Controlled Lasso for Large-Scale Covariate Adjustment in Healthcare



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Describe study

Specify a realistic

statistical model

Define estimand

| estimand

timand

Construct

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance

Step 4. Estimation and Inference using
TMLE + SL

Case study 1: Evaluating safety and efficacy with high
dimensional RWD

stat — F[E(Y |A=1,W)] — E[E(Y |A=0,W)]

Challenges

* Lack of baseline randomization

* How to model propensity score and outcome regression?
* Thousands of covariates in linked EHR + claims

* Traditional parametric model too high dimensional, unknown
functional form



Outcome-regression weighted LASSO (OAL)

Targeted
Lsaming Shortreed & Ertefaie (2017) proposed outcome-regression

Markvander weighted Lasso (OAL) for propensity score (PS) estimation:
¢ Fit unpenalized linear model for E(Y | A, W):

Nima Hejazi
(&,n) = argmin lh(a; Y, A, W).
a777

. where 77 is the coefficient for A, and « is the coefficient for

e W.

B ® Denote the coefficient for variable WW; in the outcome
regression with &;.

e Fit PS with Lasso using regularization term

Collaborative TMLE

HAL w4 ATMLE )\Z e[| 771B;]] instead of usual A3, | 3 |

Longitudinal TMLE



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan

HAL-based OAL for PS Estimation

The theoretical property of OAL relies on the correct
parametric formula, which is often unknown in practice. We
extend OAL to outcome-regression weighted HAL (OHAL):

2]
o

Compute the outcome regression using Lasso of form
Use as basis functions for the PS {¢;(1, W), ¢;(0, W) : j}.

Both of these two basis functions will be associated with
same weight a,(j).

Compute the propensity score using a Lasso logistic
regression using the above basis functions. The
Li-constraint for f3;'s, the coefficient for ¢;, is defined as
the weighted Li-norm above.

Or simply define |31 = Zj7an(j)¢0 | BU) |-



C-TMLE to select L;-norm

Targeted

e ® Tune the Li-norm with C-TMLE: i.e. optimize in A
Mark van der increase in likelihood of TMLE-step using gy .

Nima Hejazi

® Can be combined with standard lasso to yield a
collaborative-controlled (CC) regularization for TMLE.

e Similarly can be used in a collaborative-controlled
outcome-adaptive lasso (CC-OAL) for TMLE.

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

The Art of
Statistics

TL in Action

TL Roadmap

Describe study

Specify a realistic
statistical model

Define estimand
Causal estimand
Statistical estimand

Construct estimator

Obtain inference

Sensitivity analysis

Advanced TL
Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance

Conclusion

Step 4. Estimation and Inference using
TMLE + SL

Four Lasso variants OAL
for estimating PS force in covariates
predictive of Y
No Yes
C-TMLE C-TMLE
to select L1 Norm to select L1 Norm
SN




Targeted
Learning

Mark van der

Laan and
Nima Hejazi . . q
Step 4. Estimation and Inference using
TMLE + SL
Plasmode study results
crude crude
025{ W a
Describe study o 0.20 o 0005
ecify a realistic .1
e % 0181 | asso 0003
Definelestimand @ 0.10 L] OAL 0 Lasso
Causal estiman¢ o 005 cc ® cc-0AL = 0.001 o cg OSL gC—OAL
Statistical estimand 0.00-‘# PS del
o e PS model mode
Obtain inference
Sensitivity analysis Collaborative control greatly reduced bias and improved MSE

« Less regularization captured more relevant confounder information in PS

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

The Art of
Statistics

TL in Action

TL Roadmap

Describe study

Specify a realistic
statistical model

Define estimand
Causal estimand
Statistical estimand

Construct estimator

Obtain inference

Sensitivity analysis

Advanced TL
Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance

Conclusion

Step 4. Estimation and Inference using
TMLE + SL

Case study 1: Data analysis

* Analyze study data
* Outcome regression: Lasso with expert-selected covariates forced in
* PS: Collaborative control Outcome-adaptive lasso (CC-OAL)
« force in covariates selected in the outcome, others as candidates
» C-TMLE to choose L1 norm

* Result: RD =0.005 (95% Cl: -0.027, 0.038)
crude RD = 0.024 (95% CI: 0.018, 0.030)
Crude estimate indicates
NSAIDS increase risk for AKI
Adjustment moves point
estimate towards the null



Zero-order Highly Adaptive Lasso (HAL): A
nonparametric MLE

Targeted
Learning
Key Idea
Mark van der
Laan and
Nima Hejazi

e Any d-dimensional cadlag function (i.e. right-continuous,
left limits) can be represented as an infinite linear
combination of spline basis functions.

® The variation norm / complexity of a function is the
Li-norm of the vector of coefficients.

Zero-order HAL converges to true function at rate
n~1/3(log n)9/? (only assuming finite variation norm)

HAL and A-TMLE
Longitudinal TMLE

Variable Importanc



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

ol tive TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan

Formal representation of cadlag function as linear
combination of zero-order splines

* A cadlag function f € D(©)(]0,1]9) can be represented as

F(x) = £(0) + Z /X]dfu

sC{1,..

where fs(xs) = f(x(j)I(j € s) : j=1,...,d) is the section
implied by setting coordinates outside s equal to zero, and
%= (x(j) : j € 5).

® Moreover, we define the sectional variation norm of f as
the sum over s of the variation norms of f:

115 = S0l = O [+ [ ldh(w)
s s/ (0s,1s]



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

ble Importan

® Now, notice that this writes f as an infinite linear
combination of x — /(x5 > u) of zero order splines with
knot-point u € (0s, 1] and coefficient dfs(u), and that the
sectional variation norm is the Li-norm in this
representation.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

The Art of
Statistics

TL in Action

TL Roadmap
Describe study

Specify a realistic
statistical model

Define estimand
Causal estimand
Statistical estimand

Construct estimator

Obtain inference

Sensitivity analysis

Advanced TL
Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance

Conclusion

Zero-order HAL performance for d=3

Yo(X)= =25 (X< =3) + 2.5 I(x; > =2) — 2 (x;>0) + 2.5x3 I(x;>2)
=25 1(x>3) + 1(xo > =1) — 4x3 |(Xa>1)+ 2 1(xx>3)

10

0 Xg=0 — o(x1,0,0)

0 x=1 - = w0,0,1) WAL . o
0 © 100

® 500
> GBM | o 1000 . oo

1)

© o

Random Forest —| (] (X

0 o,
l °

T T T T 1

-4 -2 2 4

,2 Kernel Regression — . .
o
T — 0(0, %2, 0)
=7 wl0xe 1) Regression Tree | .
)
>
Radial SVM — [ o o

o
7 oo © Polynomial MARS - e -

T T T T 1 T T T T T 1

-4 -2 0 2 4 0.3 04 05 06 0.7 0.8

X2 R?



HAL Provides Estimators of Large Variety of
Nuisance Parameters Needed in Causal Inference

Targeted

e e Causal Inference requires statistical estimation of nuisance

functions.

Mark van der
Laan and
Nima Hejazi . . . . . oy
® In particular, it requires estimation of conditional means;
conditional densities or cumulative distribution functions;
intensities, conditional hazards. Standard loss functions

can be employed for these.

® Moreover, it is often possible to define risk functions that
define target functions of interest itself. For example, a
variety of risk functions have been proposed for the
conditional treatment effect. One can then apply HAL to

minimize the empirical risk function.
T ® |n these cases, estimation of the empirical risk function

HAL and A-TMLE

Longitudinal THLE requires itself nuisance parameter estimation, where again
S HAL could be used.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

ol tive TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan

How to develop a HAL-MLE: parametrize target
function in terms of unrestricted function

Suppose one is interested in a functional parameter Q(P)
such as a conditional density.

Select a loss function or risk function so that

Q(P) = argming Rp(Q), where, for example,

Rp(Q) = PL(Q) for some loss L(Q).

Q@ might be constrained in some ways. Therefore, find a
parametrization @ = Qr in terms of an unconstrained
function f. For example, parametrize a conditional density
in terms of conditional hazard and represent the latter as
exp(f).

Now, model f as a linear combination of zero order splines
and compute the MLE

Bn = argming |5, <c, Rn (sz50)¢j>, where R,(Q) is an

estimate of the risk Rp,(Q) such as R,(Q) = P,L(Q).
The HAL-MLE of Qq is then given by Q, = Qf, with



Additive models within the cadlag function space
to define subspace specific HALs

Targeted

gsaning ® |nstead of selecting the richest set of basis function such
Mark van der as the ones implied by knot-points

Nima Hejazi {Xi(s):i=1,...,n,s C{1,...,d}}, one can only model

a subset &7 of all the additive functions
fs(xs) = [ I(xs > u)dfs(u) by not including all subsets s in
Sy
e e If S; represents the collection of all subsets we include,
then this defines additive models
f(xs) = f(0) + D ses, fs(Xs). One can then define a
corresponding HAL-MLE f, s,.
* More generally, we define D(O)(R%*) as the linear span of
R {¢; : j € R%*}, and by choosing the richest set R?, we
g AT have DO)(R%) = DO)([0, 1]%).
* We use D,(VOI)(RQ*) when bounding Li-norm by M.



Targeted

Learning ® Every choice of subset of basis functions then implies an
Mirk van ccller HAL—MLE
Nima Hejazi ® One could also first use an initial ML-algorithm, such as

MARS, to learn the family of subsets, S7, that appears to
be needed, and then compute the resulting HAL-MLE
fn.s,-
P e Of course, the screening algorithm is then part of
e “‘:‘  algorithm, which needs to be respected when using
cross-validation to select the Lij-norm or select tuning
parameter of the initial screening.

ol tive TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan



Rate of convergence of zero order HAL

veming * Let Q, = Qf, be the HAL-MLE.
“:LmkHJS * Let do(Q, Qo) = PoL(Q) — PoL(Qo) be the loss based
dissimilarity.
® We have

do(Qn, Qo) = Po{L(Qn) — L(Qo)}
—(Pn — Po){L(Qn) — L(Qo)}
e e < —(Pn— Po){L(@n) — L(Q0)}-

o Let 7 = {L(Qf) — L(Qo) : f € D¥([0,1]9)}.

® The (known) covering number for Dﬁﬁ)([o, 1]9) implies the
WALt ATLE same covering number for F.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

ol ative TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan

Using empirical process theory:

® Let F(8) = {f € F: Ppf2 < §°}.

® suprer(s) | n'/2(P, — Po)f | can be bounded by the
entropy integral J(6, F(§)) = f(O,(S] log N(e, F, L?)dE,
which behaves as §1/2 up till log d-factor.

e Using that Po(L(Q) — L(Q)))? < Cdo(@, Qo), we can
then apply an iterative proof bounding

do(Qn, Q) < n"Y2 sup | n'2(P,— Po)f | (1)
fEF(5%)

~ nY2y(sk, F), (2)

starting with 80 = 1, §! = n~1/4 and so on.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Col tive TMLE
HAL and A-TMLE

® The monotone improving (in rate) sequence converges to
the fixed point §* of equation

62 = nY2 (8, F).

® This 0* equals the rate of convergence for d3/2(Q,,, Qo).
e We find do(Qn, Qo) = Op(n=2/3(log n)9).



Basic R hal9001 Functionality

Targeted

Learning © Load package and data:
Mark van der library(hal9001)
Nima Hejazi data(mtcars)

@ Create numeric vector for dependent variable:

Y <- mtcars[, "mpg"]
© Create dataframe or matrix of predictors:

X <- mtcars[,c("cyl", "disp", "hp", "wt")]
Q Fit HAL:

hal_fit <- fit_hal (X=X, Y=Y)

Note: default max_degree=3 considers no more than 3-way
interactions, and default reduce_basis=0 places no restrictions
e T on the minimum proportion of 1's in basis functions.

HAL and A-TMLE
Longitudinal TMLE
Variable Importan



Summary table of hal9001 HAL fit

Targeted .
st summary (hal_fit)$table

Mark van der coef term
Laan and

Nima Hejazi 35.4070 Intercept

-4.0801 I(disp >= 440)
-4.0118 |I(disp >= 78.7)
-2.7170 I(wt >= 1.513)
-2.4454 |(wt >= 3.215)
-1.8184 |I(disp >= 71.1)

Describe stud

-1.7208 I(thp >= 180)

e -1.6830 I(disp >= 95.1)

stimand -1.6039 I(hp >= 66)*I(wt >= 2.2)

estimand

e e -1.5623 I(wt >= 2.2)

Obtain inference 1.3785 I(disp >= 351)
Sensitivity analysis

-1.2444 |I(hp >=175)
-1.1888 I(disp >= 301)

Collaborative TMLE

HAL and A-TMLE -0.9026 I(hp >=123)
Longitudinal TMLE
0.7336 I(hp >=52)

Variable Importanc

-0.5810 I(disp >= 120.1)*I(hp >= 97)
-0.4395 I(disp >= 108)*I(hp >= 93)



Specifying hal9001 model formulas

Targeted

Learning Examp/e: Observe O = (W17 W27 A7 Y) ~ PO

Mark van der
Laan and

Nima Hejazi R code: fit_hal(Y, X, formula, data, ...)
Additive model formula:
Y~.orY~h(W1l) + h(W2) + h(A) Bi-additive model

formula:
Y~ ."2o0r
——— Y ~ h(W1)+h(W2)+h (A)+h (W1,W2)+h (W1,A)+h(W2,A) Only
interactions with A formula:
Y ~h(.) +h(.,A) or
Y ~ h(W1)+h(W2)+h(A)+h(W1,A)+h(W2,A) Monotone 7 (i)

wme 4 (d) formula examples: Y ~ i(.) or Y ~ i(.) +i(.,.) or

HAL and A-TMLE

Py~ i (W1)+d (W2) +1(A)



Possible HAL fits under various smoothness orders

Targeted

Learning Example: Observe (W, A, Y) ~ Py
Mark van der

laanfand R code: fit_hal(Y, X, data, formula, k, ...)

Nima Hejazi

Example fits for 0-order smoothness, k=0:
Additive model:
Y =I(W >05)+I(W >0.3)+I(A>0)
Bi-additive model:

Y =I(W >0.5)+1(A>0)+IL(W >05,A>0)

Example fits for 1st-order smoothness, k=1:
Additive model:
Y =I(W > 05)[W —0.5]+I(W > 03)[W —-0.3]+ I(A >
e 0)[A=0]
HAL and ATHLE Bi-additive model:
Y =I(W > 05)[W —0.5]+I(A>0)[A-0]+I(W >
0.5,A > 0)[W — 0.5][A — 0]



Derivation of first-order spline representation of
cadlag function

Targeted

Lt ® In the presentation of f € D,(\E,)([O, 1]9) there appear
Mark van der integrals [(g(s) x(s) dfs(V)-
Nima Hejazi

e Assume and write dfs(u) = dfs/dudu; assume the
RN-derivative £ = dfs/du € D;S,)([O, 1]9), and plug-in
the zero order spline representation for

sics /(0(s1)u 51)]

e Apply Fubini's theorem to the double integrals over (u, u1)
to obtain a representation in terms of tensor products of
first order splines.

ol tive TMLE
HAL and A-TMLE
tudinal TMLE



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

ol ative TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan

As an example, let's do it for a univariate function:

which is a linear combination of first order splines
L (x) = I(x > u1)(x — u1), including ¢§(x) = x implied

un

by knot-point u; = 0.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

ol ative TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan

® In this manner we obtain the following first order spline
representation for a function f € D([0,1]9) (a cadlag
function satisfying our first orders smoothness
assumption):

F(x) = F(0) + S,y S(x(s)R(0)
+ P for[50 o (%) | OLepy (x(51)) A5 ().

* Here ds (x(5/51)) = [Tjes/s x(1) and £ is the
s1-section of fi%) = dfs/du.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

ol tive TMLE
HAL and A-TMLE

Longitudinal TMLE
Variable Importan

e Notice that finite linear part in this representation of f is
just parametric model in xi,...,xy and its interactions
(e.g., for d = 2, x1, x2, x1x2. The remaining infinite linear
part is linear combination in tensor products of first order
splines with interior knot-points in (0(s1), 1(s1)] while
having knots at 0 for components x; with j € s/s;.

® The Li-norm of all coefficients fs(g(du) and 1‘5(1)(0)
defines our first order sectional variation norm [[f||7 ;.

o D,(Vl,)([O, 1]9) is defined as all functions f € D(©)([0, 1]9)
satisfying this first order smoothness with ||f|[} ; < M.



(fine enough) Finite dimensional first order spline
working model

Targeted

Learning ® For each s C {1,...,d}, we can select knot-points
U RYs)= {(0(s/) Xi(sn)) = 1. nsi C s} C
i e [0(s),1(s)]. The corresponding first order splines are:

{gbi(s) s u(s) € RY(s)}.

For s; the empty set this yields {0(s) : s C {1,...,d}},
giving the interactions qb(l)(s) = [Ljes -

® The total set of N first order splines is thus;

R} = {¢Lll(s) s u(s) € RYs),s € {1,...,d}}.

ol ative TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan



Targeted

Learning ® The initial starting model of linear combinations of first
Mark van der order splines is then:

Laan and
Nima Hejazi

DORE) =< 3 BG)e; : B

P
JERN

* This working model DM(R}) ¢ DX)([0,1]7) represents a
close approximation of D™)([0,1]?) (providing sup-norm
approximations going as fast as n_1/2).

tive TMLE

HAL and A-TMLE
Longitudinal TMLE
Variable Importan



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

2l mode

stimand

Collaborative TMLE

HAL and A-TMLE
Longitudinal TMLE

Variable Importanc

First-order spline HAL

® We then define

- in_ Pyl
Bn argﬁy‘g?llgcn nL(Qfy )5

and first order HAL @, = QfNﬁn.



Rate of convergence for first order HAL

Targeted

Learning ® One can select J zero order splines R°(J) so that
U DORO(J) yields a O*(1/J) [2-approximation of
Nima Hejazi D(O)([O7 1]d)

® This explains the dimension free rate of convergence
OF(n~1/3) for the zero-order HAL.

® One can select J first order splines, R(J), so that
B DM(RY(J)) yields a O1(1/J%) supremum norm
‘ . approximation of D()([0, 1]9).
¢ The entropy integral J(0, D,(Vl,)([O, 119), [|]loe) = O (6%/%)
instead of Ot (5/?) for D,(\S)([O, 1]9).

e Qur rate of convergence proof yields

ol ative TMLE
HAL and A-TMLE

e do(Qn: Qo) = O (n~*/%)



New Results on higher order HAL-MLE

Targeted

T ® So first order HAL converges at rate n—2/5 pointwise,
Mark van der ignoring log n-factors.
Nima Hejazi

® At cost of another log n-factor this rate is uniform in x.
® Pointwise and simultaneous confidence intervals follow.

® Any of these HAL-estimators result in plug-in estimators
of smooth target features that converge at n=1/2 and are
asymptotically normal, and either efficient and
super-efficient (on set of measure zero!).

® |nference can be based on nonparametric bootstrap.

ol tive TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan



Efficient HAL-TMLE (vdL, Rubin, 2006)

Targeted

Learning ® Construct initial estimator P,; determine a least favorable
Mark van cer path {P, . : e € (—0,)} C M through P, with score D
Nima Hejazi at e = 0

® Compute MLE €, = arg max. P,L(P, ), where L(P) is a
valid loss function so that W(argminp PoL(P)) = V(Po).
® Let P, =P,.,. The TMLE is given by V(P},).
I \ ® By construction,
V(P}) — V(Po) = (Pn — Po)Dp. + R(P, Po), with
R(P,Py) = V(P) — W(Py) — (P — Pg)Dp an exact second
order remainder.
® Using the Highly Adaptive Lasso as initial estimator P,
T we are guaranteed that W(P?) is asymptotically efficient

HAL and A-TMLE

Longiuinl THLE estimator of W(Pp) (van der Laan, 2017).



HAL-TMLE of Target Estimands is Asymptotically

Efficient
Targe?ed
e ® TMLE is two-stage method for constructing plug-in
Mark van cer efficient estimators W(P}) of a pathwise differentiable
e EE target estimand W(Fp).

® The HAL-TMLE (using HAL as initial estimator) is
efficient in great generality (vdL, 15).
® The only necessary model assumptions are:
® The true nuisance parameters have finite sectional
variation norm
® The loss functions of the true nuisance parameters are
uniformly bounded, so that oracle inequality applies
® The strong positivity assumption holds

ol tive TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

ol ative TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan

Example: Asymptotic efficiency of (zero-order)
HAL-TMLE for treatment-specific mean / ATE

Consider the HAL-TMLE of EY; = EE(Y | A= 1, W) based
on (W,A,Y) ~ Py in a nonparametric statistical model. It is

asymptotically efficient if
Q@ i< Py(A=1| W) for some § >0
QW E(YIA=1,W)and W — Py(A=1| W) are
cadlag
Q@ W E(Y|A=1,W)and W — Py(A=1| W) have
finite sectional variation norm.



Undersmoothed HAL-MLE is efficient uniformly
over large class of target estimands

Targeted

T e HAL-MLE is efficient for pathwise differentiable target
Mark van cer estimands, if L1-norm is chosen large enough.
Nima Hejazi

® Due to being an MLE, it solves a large class of score
equations, in particular, efficient scores corresponding with
target estimands.

® By undersmoothing enough, it uniformly solves a class of
score equations that approximates all scores with finite
variation norm. As a consequence, it is a globally efficient
MLE across most pathwise differentiable features.

® This results can be applied to different assumed subspaces
(i.e.., additive models of form D(©)(R(d))) of
i DO)([o, 1]9).

HAL and A-TMLE

Longitudinal TMLE
e Importan;



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

HAL and A-TMLE
Longitud

al TMLE

Nonparametric Bootstrap of HAL-TMLE or
HAL-MLE

Fix M at the cross-validation selector M, or another
selector.

Draw 10,000 samples of size n from empirical measure P,.
For each bootstrap sample P#, recompute the

Fx
HAL-TMLE(M), say P
The HAL on bootstrap sample can be restricted to only
include indicator basis functions that were selected by
HAL-MLE(M) on original data.
Use sampling distribution of 1/1#7;4 = \IJ(P”#TV,) conditional
on P, to construct 0.95-confidence interval.
Increase M till plateau in confidence interval for optimal
coverage.



Bootstrap works for HAL-TMLE or HAL-MLE

Targeted

e ¢ Conditional on the data (P, : n > 1), the bootstrap
Mark van cer sampling distribution of 1)} converges to optimal normal
i e limit distribution N(0, o3).

® The approximation error of bootstrap is driven by
performance of nonparametric bootstrap for an empirical
process indexed by Donsker class (i.e., cadlag functions
with sectional variation norm bounded by M).

® This suggests robust finite sample behavior of the
nonparametric bootstrap.

ol tive TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan



Adaptive TMLE

Targeted

T ® Data adaptively learn a model M, C M. Make sure that
Mark van qer d(Po, M) = op(n~1/#) (e.g., use HAL, or cross-validation
Nima Flejazi selection among a large family of submodels).

® Define the projection parameter W 4, : M — R defined by

\UMH(PO) = \U(HMHPQ), where
'DO,n = nMn(Po) = argminpc v, P()L(P) is the

S log-likelihood (or loss based) projection of Py onto M,,.

e Construct a TMLE W, (P;) of W, (Po) based on

o canonical gradient D}‘Vlmp of this projection parameter.

Generally speaking, for log-likelihood loss functions
Vo, (PF) = V(Py) with Py € M.

alaborate THLE ¢ Provide confidence intervals for W4, (Po) as usual based

Longitudinal TMLE on DM,,,P()'
o * Possibly cross-fit, like CV-TMLE.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

HAL and A-TMLE
Longitudinal TMLE
Variable Importan

Adaptive TMLE of ATE

® Let O=(W,A, Y); M nonparametric;
V(P) = Eptp(W);
p=Ep(Y|A=1,W)—Ep(Y|A=0,W).

® Consider loss function L, 4, (7) indexed by nuisance
parameters mg = Eo(Y | W) and gp = Po(A=1| W):

Lng(T) = (Y —m(W) — (A~ g(1| W))7)* .

® Double robust loss for CATE: We have
70 = argminy PoLm g(7) if m= mg or g = go.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

HAL and A-TMLE
Longitudinal TMLE
Variable Importan

Adaptive TMLE of ATE

® Let }°; B(j)¢; be a high dimensional linear combination of
splines ¢; as in HAL. Define

=ar min  P,L Torll I

" g s, " (2}: WJ)
Then, refit 37; 5 (j)0 Bj¢; unpenalized (relax-HAL).

® Let 7 = >3 Bn(j)®j. ¥n = PnTs is an adaptive TMLE
where the learned working model M, for Py is the
semiparametric regression model selected by HAL.

® |t is super-efficient corresponding with oracle model Mg
the limit of HAL-working model M, (or just efficient if
Mo = M).



Mark van der

Targeted
Learning

Laan and
Nima Hejazi

HAL and A-TMLE

tudinal TMLE

Integrating RCT with Observational Data

Suppose we observe data on two studies indicated by

Se {071}1 (5,‘, W;, A;, Y,), i=1,...,n.

In study S =1, treatment is randomized (RCT), so that
the ATE can be robustly estimated.

Study S = 0 is an external RWD study.

We make no other assumptions on likelihood beyond
possible knowledge of g(A| S, W).

However, the RCT is underpowered due to small control
arm or small overall sample size.

Therefore, a TMLE of the ATE based on S = 1 only would
have large confidence intervals lacking power at reasonable
alternatives.

Can we utilize the external study S = 0 from the real
world to obtain a more efficient estimator of the ATE?
Without adding assumptions!



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

tive TMLE

HAL and A-TMLE
Longitudinal TMLE

Variable Importan

¢ Dang et al (2023) developed an ES-CV-TMLE. Rejects
RWD if biased relative to RCT.

® Here, we develop an Adaptive TMLE that learns bias in
RWD and corrects pooled estimator.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

HAL and A-TMLE
Longitudinal TMLE
e Importan;

Motivating example: oral semaglutide on
cardiovascular outcomes (Dang et al. 2023)

Causal question: risk of MACE within one year if all patients
in the target population were prescribed oral semaglutide plus
standard-of-care compared to if all patients were prescribed
standard-of-care alone?

Set up: a single RCT (PIONEER 6) vs. a hybrid
randomized-external data study.

Results:

® Under the single RCT:
-1.30% (95% CI -2.60%, 0.00%).

® Under the hybrid design using ES-CVTMLE:
-1.53% (95% ClI -2.75%, -0.30%).

Conclusion: importance of the Causal Roadmap, using RWD
to inform regulatory approval process, power gain of test for
superiority, reduced participation-time without initiation of a
GLP1-RA.



Causal and statistical estimand

Targeted

e e RCT-ATE \U(’)’_ = EpEp(Y1 — Yo | S=1,W).
M ® Due to S =1 being an RCT, we have \Ilg equals
Nima Hejazi

Yo =FEo(Bo(Y|S=1,W,A=1)— E(Y |S=1W,A=0)).

® Note in outer expectation, we take the average over the
pooled covariate distribution.

Oral semaglutide case study: What would the risk
difference be if all patients in the target population

: ‘ were enrolled in the trial? The target population should
P not contain individuals with O probability of being enrolled
o in the trial. Factors to consider: inclusion/exclusion
e criteria of PIONEER 6, time-frame, patient characteristics,

Longrudinal TMLE healthcare engagement, etc. (Dang et al. 2023)




Decomposition of the target estimand as difference
pooled-ATE and bias term (Dang et al. 2023)

Targeted

Learning e 1st component, pooled-ATE estimand:
Mark van d )

Eraa:aannder \U(P) = EPTP(W)

Nima Hejazi

e 2nd component, bias estimand: W#(P) = W(P) — W(P):
WH(P) = Ep[N(0| W,0)73(W,0)-N(0 | W, 1)73(W, 1)),

where

s | W.A) = (S = 5| W),

and

B(W,A) = Ep(Y | S=1,W,A) — Ep(Y | S=0,W,A).

ative TMLE [ ] Thus

HAL and A-TMLE
Longitudinal TMLE

Variable Importan \U(Po) — \TJ(PO) — \IJ#(PO) bias correction.



Adaptive-TMLE for bias estimand W#

Targeted

Fearning * For pooled ATE W(Py), we could either use a regular
Mark van cer TMLE of pooled ATE or the above A-TMLE.
Nima Hejazi

® For the bias estimand W#(P,), analogue to A-TMLE for
ATE, we will use relax-HAL to learn a working submodel
for the conditional effect 75 of the study indicator S
on the outcome Y (implying a submodel M,).

e ® The corresponding A-TMLE of bias estimand also includes
targeting an initial estimator I, of My = Po(S | W, A),
and one estimates the expectation over W with the
empirical mean.

c tive TMLE

HAL and A-TMLE

Longitudinal TMLE
e Importan;



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

HAL and A-TMLE
Longitudinal TMLE
e Importan;

Benefits of using A-TMLE include

® Nominal type | error control without extra assumptions.

® Not only estimates the magnitude of the bias, also takes
advantage of the learn-able structure of the bias.
Allows full utilization of both RCT and RWD data, more
gain in efficiency.

® The bias working model mitigates large variances due to
inverse-weighting, finite sample robust.
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95% CI width comparisons

Targeted
Learning
Mark van der Table: A-TMLE's 95% Cl width as a percentage of other methods’.
Laan and
Nina'la Haejazi
Method Scenario (a) Scenario (b) Scenario (c) Scenario (d)
ES-CVTMLE 66.1% 60.4% 98.3% 98.2%
Regular TMLE 59.1% 61.2% 99.1% 99.1%
PROCOVA 59.0% 61.1% 99.0% 99.0%
RCT-only 59.0% 61.1% 99.0% 99.0%

tive TMLE
HAL and A-TMLE
Longit TMLE




General Longitudinal Data Structure

Targeted

Learning We observe n i.i.d. copies of a longitudinal data structure

Mark van der

N O = (L(0), A(0),...,L(K),A(K),Y = L(K+1)),
where A(t) denotes a discrete valued intervention node, L(t) is
an intermediate covariate realized after A(t — 1) and before
A(t), t=0,...,K, and Y is a final outcome of interest.

Desribe s Survival example: For example,

L AD = (A ()
A1(t) = [(Treated at time t)
Ax(t) = I(min(T,C) < t,A = 0) right-censoring indicator proc

e A = (T < C) failure indicator

il TLE Y(t) = [I(min(T,C) <t,A =1) survival indicator process

Y(t) C L(t) Y=Y(K+1).



Likelihood and Statistical Model

Targeted

Learning The probability distribution Py of O can be factorized
Markvan der  according to the time-ordering as

Laan and

Nima Hejazi K1
po(0) = H po(L(t) | Pa(L(t) Hpo t) | Pa(A(t)))
K+1
e = ] 90,.(0(0) HgO,A(t)(O)
st model t=0 t=0
acn = qo&o;

where Pa(L(t)) = (L(t — 1), A(t — 1)) and

Pa(A(t)) = (L(t), A(t — 1)) denote the parents of L(t) and
o A(t) in the time-ordered sequence, respectively. The go-factor
L represents the intervention mechanism.

Variabe Importan Statistical Model: We make no assumptions on qg, but could
make assumptions on gp.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

tive TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan

Statistical Target Parameter: G-computation
Formula for Post-dynamic-Intervention Distribution

o pg* = qo(0)g*(0) is the G-computation formula for the

post-intervention distribution of O under the stochastic
intervention g* = [[K_, gj\(t)(O).
In particular, for a dynamic intervention

d=(d::t=0,...,K) with d¢(L(t), A(t — 1)) being the
treatment at time t, the G-computation formula is given
by

K+1

ps (1) =TT 6.0 (1)), (3)
t=0

where

a7 (o) ((1)) = auey (I(t) | 1(t=1), A(t=1) = de1(I(t-1))).
Let L9 = (L(0), L9(1),..., Y9 = L9(K + 1)) denote the
random variable with probability distribution P¢.



A Sequential Regression G-computation Formula
(Bang, Robins, 2005)

Targeted

e ® By the iterative conditional expectation rule (tower rule),
Mark van der

Laan and we haVe
Nima Hejazi

EpaY!=E...E(E(Y?|LYK))| LYK —1))...] L(0)).

* In addition, the conditional expectation, given L9(K) is
; equivalent with conditioning on
sty L(K),A(K — 1) = dx_1(L(K — 1)).
In this manner, one can represent Epqs Y9 as an iterative
conditional expectation, first take conditional expectation,
given LY(K) (equivalent with L(K), A(K — 1)), then take the
conditional expectation, given L9(K — 1) (equivalent with

e (K —1),A(K — 2)), and so on, until the conditional

wemmae expectation given L(0), and finally take the mean over L(0).
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Mark van der
Laan and
Nima Hejazi

orative TMLE
HAL and A-TMLE
Longitudinal TMLE

TMLE

A likelihood based TMLE was developed (van der Laan,
Stitelman, 2010).

A sequential regression TMLE W(Q;}) was developed for
EYy in van der Laan, Gruber (2012).

The latter builds on Bang and Robins (2005) by putting
their innovative double robust efficient estimating equation
method, which uses sequential clever covariate regressions
to estimate the nuisance parameters of estimating
equation, into aTMLE framework.

A TMLE for Euclidean summary measures of

(EYy4 : d € D) defined by marginal structural working
models is developed in Petersen et al. (2013);

A new (analogue to sequential regression) TMLE allowing
for continuous valued monitoring and time till event is
coming (Rijtgaard, van der Laan, 2019).



A real-world CER study comparing different rules
for treatment intensification for diabetes

Targeted

Learning ® Data extracted from diabetes registries of 7 HMO research
Mark van der network sites:

Laan and .

Nima Hejazi ® Kaiser Permanente

® Group Health Cooperative
® HealthPartners

¢ Enrollment period: Jan 15 2001 to Jun 30" 2009

Describe st Enrollment criteria:
Sl ® past Alc< 7% (glucose level) while on 24 oral agents or

basal insulin

® 7% < latest Alc < 8.5% (study entry when glycemia was
no longer reined in)

HAL and A-TMLE
Longitudinal TMLE
Variable Importan



Longitudinal data

Targeted

Learning * Follow-up til the earliest of Jun 30*™® 2010, death, health
Mark van cer plan disenrollment, or the failure date
Nima Hejazi

¢ Failure defined as onset/progression of albuminuria (a
microvascular complication)

® Treatment is the indicator being on "treatment
intensification” (TI)

® n= 51,000 with a median follow-up of 2.5 years.

e Target estimand: What would survival look like if
treatment is intensified when Alc < x% for various levels
x=717,7.5,8,8.57

tive TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan



Better clinical decisions from observational data

Targeted
Learning Statistics
Research Article
Mark van der
P——" Received 24 May 2013, Accepted 5 January 2014 Published online 17 February 2014 in Wiley Online Library
Nima Hejazi

(wileyonlinelibrary.com) DOI: 10.1002/sim.6099

Targeted learning in real-world
comparative effectiveness research with
time-varying interventions

Romain Neugebauer,*" Julie A. Schmittdiel® and
Mark J. van der Laan”

statistical mode g g
Define estimand % 5
Causal estimand
_ s _ 8
Statistical estimand EE T °
Construct estimator 2z =
3 < =
o 2 3
Obtain infere « <
Sensitivity an < -, <
2 \\5\ ©
e g g
Collaborative TMLE ° T = n3 < = =
HAL and A-TMLE Time Time

Longitudinal TMLE

Variable Importance

Standard methods: No benefit to more Targeted Learning: More aggressive intensification
aggressive intensification strategy protocols result in better outcomes




Deep LTMLE: Toru Shirakawa, Yi Li, Sky Qiu, vdL

Targeted

Learning e LTMLE (Bang, Robins, 2005, Petersen et al., Gruber, vdL,
Mark van cer etc, relies on sequential regression.
Nima Hejazi

® Targeted maximum likelihood requires estimation of all
conditional densities (vdL 2010a,b; Stitelman etal (2011)).

® Rytgaard, Gerds, vdL (2023) combines TM-likelihood
based estimation of intensities with estimation of a
conditional mean function integrating over time
dependent covariates.

® Toru et al. Deep LTMLE utilize transformer architecture
for temporal difference learning, simultaneously
modeling and estimating the sequential regressions:
I 1) Computationally superior; 2) continuous time

Longitudinal TMILE monitoring; 3) large histories; 4) TMLE update step uses
B transformer gradient descent algorithm.



Predicting risk for COVID-19 infection,
hospitalization or death

Targeted

Learning ® For any subject in study, define t = 0 as January 2022:
Mark van der one might consider other t = 0 times individualized by an
Nima Hejazi enrollment criterion).

® K+ 1 is number of months of follow up after t = 0 at
which we want the outcome Y of interest.

e [(0) represents baseline history for this subject, including

o any past events, medical history etc.

Rl ¢ Define as intervention nodes A(t) indicator of being

' censored by time t (e.g. death by other causes, end of
study).

® Define outcome Y as the indicator of observing a
COVID-19 infection by time t = K + 1.

olsborstive THLE ® Define time-dependent covariates L(t) as anything

Lngtado TWLE observed in month t, before A(t): including COVID-19

Infection /Hospitalization /Death, vaccination, medical

treatments etc.



Targeted

Learning ® Our target is E(Y3=0 | L(0)): conditional risk of
R dEs COVID-19 infection by time K + 1 in counterfactual
Nima Hejazi world without right-censoring.

® So our goal is to predict risk of COVID-19 event by
K + 1-months in world without right-censoring.

® One may look at various other outcomes of interest such
Pt as hospitalization, death, composite outcomes etc.

ive TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance



Super learner to predict COVID-19 risk from
baseline information

Targeted

T ® One can set up a collection of logistic regression machine
Mark van der learning algorithms, including a variety of HAL-model fits.
Nima Hejazi

® One has to select a measure of performance, such as
AUC, log-likelihood, or MSE.

¢ To deal with drop-out (right-censoring), we can use
inverse probability of censoring weights for each
candidate algorithm and for evaluating the cross-validated
performance of the algorithm.

® The super-learner will output the best performing
prediction function, its measure of performance (e.g.,
AUC) with a confidence interval.

tive TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance



Variable importance analysis using TMLE

Targeted

Learning * Let W = L(0).
Mark van der . .
Lazn/and ® One has to define a measure of importance for each
Nima Hejazi .
variable W;.

® For example, for binary W;, one can use the ATE
estimand, which measures change in prediction due to
W, = 0 versus W; = 1 keeping W/(—j) constant.

Sy 2 e ® For continuous W; one can use the shift-intervention
estimand, which measures change in prediction due to
shifting W, to W, + 4§, keeping W(—j) constant.

® One can compute TMLE of these Wj-specific variable
importance measures, with confidence intervals and
p-values.

HAL and A-TMLE

Vo e ® One can use multiple testing adjustments to control
family wise error or false discovery rate.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

The Roadmap in Action:
Case Studies & Ongoing Projects

Berkeley

Longitudinal TMLE

Variable Importance

Conclusion



Targeted
Learning

Mark van der

Laan and
Nima Hejazi
Describe study
Specify a realistic
statistical mode

Define estimand
Causal estimand

Statisti mand

Construct estimator

Collaborative TMLE
HAL and A-TMLE

Longitudinal TMLE
Va

iable Importance

Conclusion

Berkeley

FDA Sentinel Innovation Center

Safety evaluation with high dimensional data:
Wyss et al. (2024), AJE, Targeted Learning with an Undersmoothed

Lasso Propensity Score Model for Large Scale Covariate Adjustment i

Healthcare Database Studies.

Subset calibration/two-stage designs:
-Ongoing project evaluating methods such as the two-stage design
TMLE for study designs that involve a subset of subjects with

carefully curated confounders and or outcomes, and a remaining
set of subjects.

-This is a common type of design to obtain desired causal
identification from RWD while still gaining efficiency from the less
curated data set.

Plasmode study results

crude crude
0254 @ a
2] o00s

o osl e

% Lasso % 0003

X o] o a

@ 0051 ® ccoa 2 o001 o« CC-0AL
ool S 60§

PS model PS model

Collaborative control greatly reduced bias and improved MSE
+ Less regularization captured more relevant confounder information in PS

These projects involve multi-author working groups with
FDA/Pharma/ iics/Kaiser Peri

The Sentinel Innovation Center is funded by the FDA
through the Department of Health and Human Services
(HHS) Task order 75F40119D10037.




Targeted
Learning

Mark van der
Laan and
Nima Hejazi

statistical model

Define estimand
Causal estimand

Statis

stimand

Construct estimator

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance

Conclusion

Comparative Effectiveness: TL for RWE

Targeted Learning FDA multi-year FDA-funded project
Demonstration Project

TL on YouTube Publications with
FDA co-authors

Targeted learning: Towards a future informed
by real-world evidence

Resulted in various
collaborative relations with
FDA statisticians

Developing a Targeted Learning Based
Statistical Analysis Plan

Over 250 FDA short course attendees

SHORT COURSE ANNOUNCEMENT

A Targeted Learning Framework for Causal Effect Estimation
using Real-World Data

§§'£k§l§y Funded by FDABAR-19-00123-A3




Targeted
Learning

Mark van der
Laan and

e Hejez Comparative Effectiveness: GLP1-RA and Dementia 0
in the Danish National Registry

Population: Insulin-naive T2-DM initating 2nd-
. 5-yr RD (95% Cl): -0.005(-0.009,-0.001
line therapy (N=104,928) yrRD (95% Cl) ( )

Describe study Causal Estimand: Difference in 5 year incident

Specify a realistic dementia under hypothetical protocols: A

t: al del . 0.012

et meds - continuous GLP1-RA vs. no- GLP1-RA use goo

Define estimand . 1]

- nocensoring £

Causal estimand 8 0.008

Statistical estimand Identification: Baseline & post-baseline 2

Construct estimator confoudner adjustment £ 0008 I

Obtain inference . R r/

Sty SRS Estimation & Inference: Longitudinal TMLE w/ H T T H
machine learning; simulation-based Year of follow up
specification

Collaborative TMLE Nance et al, 2023, arXiv:2310.03235 “#- NoGLP1-RAuse ¢~ Sustained GLP1-RAuse

HAL and A-TMLE
Longitudinal TMLE

Variable Importance

Conclusion
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Nima Hejazi

Define estimand
Causal estimand

Statis

mand

Construc

Obtain infer

Sensitivity a

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance

Conclusion

Causal Effect of SLGT2/SU on MACE, controlling for >100 baseline
confounders, and time-dependent confounders of drop-out @

[coeeri] P=0.35 P=0.12

Crude/Unadijusted IPW + SL (truncated 99t) TMLE + SL (truncated 99t)

NNT at 2.5 years = 119

PP

P=0.10 P=0.01

Berkeley

Preliminary results from the ON TARGET DM Study (PCORI #DB-2020C2-20318, Neugebauer & O’Connor)
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Describe study

Specify a realistic
statistical model

Define estimand
Causal estimand
Statistical estimand
Construct estimator
Obtain inference

Sensitivity analysis

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance

Conclusion

RCT analysis: Improved Precision

SEARCH Study (NCT:0186460: 388 | ]
Pragmatlc Cluster RCT WSEA”RCJ:' ) .
- =320,000, 16 communities e HIV Testing and Treatment with the Use of a
- ™ LE & “Adaptwe pre- Community Health Approach in Rural Africa
specification D, Havl, L8, Balzer, £, Charlebos, .0, Clrk, . Karisima . A
= Flexible pre-specified adjustment
- Primary pre-specified analysis|Focusing Stage 2 estimation: Effect 95%Cl  Efficiency”
in trial . Three-y ive HIV Inci
- Efficiency gains Unadjusted 098 (0.66,145) -
T Rubstantial for some outcomes |y e i adaptive Prespec. 096 (080,1.17) 46
Similar findings across many Incidence of HIV-associated TB or death
trials Unadjusted 0.79 (0.64, 0.98) -
TMLE with Adaptive Prespec. 0.80 (0.69, 0.91) 2.6
F ion-level Viral Suppressi
Unadjusted 1.15 (1.11,1.20) -
Berkde PP IO PR VIR | TVILE with Adaptive Prespec. 1.15  (1.11,1.20) 1.0

ANE, HEmnEies 2024 *relative to unadjusted
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Laan and
Nima Hejazi

The Art of
Statistics

TL in Action

TL Roadmap
Describe study

Specify a realistic
statistical model

Define estimand
Causal estimand
Statistical estimand

Construct estimator

Obtain inference

Sensitivity analysis

Advanced TL
Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance

Conclusion

RCT analysis: Intercurrent Events/Drop-in

LEADER Cardiovascular outcomes trial: RCT comparing
Liraglutide vs. SoC for treating diabetes patients at
high cardiovascular risk

The study showed a significant Cox-PH RH with CI
[0.78-0.97] on MACE time to event outcome

TMLE reproduced similar effect, with more precision;
robust across many subgroups (Chen et al., 2023)
There was significant additional drop-in insulin use
in the control arm.

An L-TMLE stochastic intervention direct effect
analysis controlling for the differential post-treatment
use of insulin was carried out

[ NV V)

Results:

-Significant stochastically controlled additive direct
treatment effect

-Non-significant statically controlled additive direct
treatment effect

drop-in in

uNveRsTTY wmmm) HELENE C. W, RYTGAARD', EDWIN FONG, JENS M. TARY,

(8) Fracton of patients using drug against vist in LEADER

Fon| =t

Vet
(b)  Estimates (95% Ci) & Estimands for LEADER

—_—

—_—

ATE @55 C)

hose st isk

95% confidence inervals

to handle
trials

THOMAS A. GERDS, SOREN RASMUSSEN, MARK J. VAN DER LAAN, HENRIK RAVN

e

for LEADER and (b) LTMLE estimates with
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Describe study

Specify a realistic
statistical model

Define estimand
Causal estimand
Statistical estimand

Construct estimator

Obtain inference

Sensitivity analysis

Collaborative TMLE
HAL and A-TMLE
Longitudinal TMLE

Variable Importance

Conclusion

Berkeley Dang, et al, 2022; arXiv:2210.05802

® Objective: Potentially augment

control arm while controlling Type 1
error
Pioneer 6 RCT

Optum observational data

® Experiment-Selector CV-TMLE

Select experiment (RCT only or RCT with
RWD) that optimizes bias-variance tradeoff

Separate experiment-selection from effect
estimation using cross-validation

- Integrates negative control outcomes

Dang, et al, 2023, ). Clin & Trans. Science

RCTs Augmented with External Controls
Ex. Semaglutide and Major Adverse Cardiovascular Event (MACE)

[

Oral Semaglutide and Cardiovascular
Outcomes in Patients with Type 2 Diabetes

Husainetal. (2019)

Estimated Causal Risk Difference (%) of MACE within 1 Year

sonnr
-

%) Length

RCT Z-Test —_——] -130(-2.60,0.00)  100%

Bl
CRD (%)
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Laan and
Nima Hejazi

External Controls: Adaptive-TMLE MSE comparisons

ESTIMATOR: A-TMLE ES-CVTMLE TMLE

e Dang et al (2023): ES-CV-TMLE that data adaptively No bias
decides to accept or reject external data based on
evaluating bias relative to gain in variance.

e Adaptive-TMLE is an advance in TMLE.

e Ityields a new method for integrating external controls N

Be==ila el that estimates the bias from external data and
Sty & e corrects the pooled TMLE of ATE.
statistical model . " .
N . e The method is shown to be asymptotically valid

fine estima . .

e seman coverage and type-| error without any assumptions Large bas
Causal estimand beyond RCT. \

S cvan e Advantage is that it yields a way forward with biased \
Construct estimator external control data while preserving valid inference. A
Obtain inf >

.
Sensitivity Adaptive debiased machine learning I~
g data-driven model selection techniques

Alex Luedtke

Collaborative TMLE Berkeley ‘ sy 25, 08

arXiv:2307.12544
HAL and A-TMLE

Longitudinal TMLE

Variable Importance

Conclusion



Concluding Remarks

Targeted

RIS ® Roadmap for causal inference and Targeted Learning
Mark van cer provides systematic principled approach for generating
Nima Hejazi RWE

® |ntegrates all advances in machine learning, statistical
theory and causal identification.

® SL and TMLE can be tailored towards particular
estimation problem in pre-specified manner using outcome
blind simulations.

e HAL provides realistic models; theoretical guarantees,

dimension free rates, and bridges TMLE to inference for

- non-pathwise differentiable target functions such as
— conditional treatment effects, dose response curves etc.

HAL and A-TMLE

Longitdinal TMLE ® Bridges such as Deep LTMLE to deep learning community

are crucial.

Conclusion



Active TL collaborations and software

Targeted

e ® The Center for Targeted Machine Learning (CTML) at UC
Mark van der Berkeley: https://ctml.berkeley.edu
Nima Hejazi

® Government: US Food and Drug Administration (FDA)
and National Institute of Allergy and Infectious Diseases
(NIAID), California Department of Public Health

® Private sector: Genentech, Gilead, Kaiser Permanente,
Accenture, Novo Nordisk

e Software:

® The tlverse ecosystem: https://github.com/tlverse
® Additional packages: tmle, 1tmle, 1mtp, SuperLearner

tive TMLE
HAL and A-TMLE
Longitudinal TMLE
Variable Importan

Conclusion


https://ctml.berkeley.edu
https://github.com/tlverse

Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Collaborative TMLE

HAL and A-TMLE

Longitudinal TMLE
ble Importan

Conclusion

Thank you!

Feel free to email us to ask questions, request learning
resources, or get involved in TL research and/or CTML.

Mark's email: 1laan@berkeley.edu

Nima's email: nhejazi@hsph.harvard.edu
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Higher order spline HAL

Targeted

Learning ® Analogue as above, we can define
e D,(\j)([O, 1]9) ¢ D =1)([0,1]%) as class of k-th order
Nima Hejazi

smooth functions with k-th order sectional variation norm
bounded by M.

® Analogue we obtain a k-th order spline representation for
f € D(([0,1]9); a finite dimensional linear working model
DW)(RK,) approximating D()(][0,1]?) and a corresponding
k-th order spline HAL-MLE:

fp=arg min P,L(Qf),
FeDiy) (R)
and Q, = Qf,.
e With J well chosen k-th order spline basis functions we

can obtain an O (1/J%*1) sup-norm approximation of
D®([0,1}) .



Targeted
Learning ® As a consequence, we now have

Mark van der J((S7 D[(\/l[()([oa l]d)’ ||HOO) — O+(5(2k+1)/(2k+2))

Laan and
Nima Hejazi

® Qur rate of convergence proof now yields:
do( Qs> Qo) = Op (n™ 27/,

with k* = k + 1.

® For example, for k = 0,1,2, we have the dimension free
rates 04 (n~Y/3), OF(n=%/°) and O} (n~3/7), respectively.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Discrete Super Learner incorporating higher order
HAL

® By varying smoothness degree k and starting sets R*(j) of
basis functions, one can define many HAL-MLEs over
D (RA())).

® The discrete super learner using this library of
(k,j)-specific HAL-MLEs will perform asymptotically exact
as well as the oracle choice among all these HAL
estimators, thereby achieves the rate of convergence of
HAL for the unknown smoothness ky and smallest
subspace D(K)(R; (d)) containing true Qp.

® Thus this cross-validated higher order HAL-MLE is
minimax smoothness adaptive achieving the minimax
smoothness adaptive rate of convergence for univariate
function estimation, up till log n-factors.



Asymptotic normality of higher order HAL

Targeted

T ® let R, be a set of J, k-th order splines providing uniform
Mark van der approximation error O+ (1/Jk+1).
Nima Hejazi

® The non-zero coefficients in the HAL-fit does this for us
when we choose a fine enough starting model.

® |n addition, HAL will select an adaptive selection that
works best for Q.

e Let D)(R,) be the linear working model. This set yields
the O(1/J5+1)-uniform approximation of Qp.

® The HAL-MLE Q, = >"cr, Bn(j)#; operates as an MLE

of the oracle approximation Qo.» = > er, Bo,n(j)¢; in this
working model.



Targeted

Learning L] In particular, If we dO the reIaX_HAL (reﬂttlng the SeIeCted
Mark van der working model without L;-penalty), then it is an exact
Nima Hejazi MLE Of QO,n-

® One can analyze this parametric MLE QX w.r.t. Q5 to
establish that (J,/n)Y2(Q, — Qo.n)(x) =4 N(0,53(x)),
while, by our uniform approximation result

HQO,n - QOHOO ~ O+(1/Jrl1(+1)



Asymptotic normality and uniform rates

Targeted

T ® By selecting J, ~ n~1/(k¥2) the pointwise rate equals
Merk van der n~K"/(2"+1) yp till log n-factors.
Nima Hejazi

® At cost of another log n-factor this rate is uniform in x.

® Pointwise and uniform confidence intervals follow.

Beyond inference for Qp, these results teach us that we
have dimension free uniform rates of convergence for

HQn _ QOHoo — O+(n_k*/(2k*+1)).
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Learning

Mark van der
Laan and
Nima Hejazi

New Results: Asymptotic normality of higher order
HAL-MLE itself, van der Laan, 2023

Defined higher order smoothness classes D ([0 1]7) with
global complexity measure C, k = 0,.
We define MLE over this model (k-th order HAL).

D(Ck)([O, 1]9) can be represented as linear span of tensor
products of < k-th order spline basis functions, where
Li-norm is bounded by C.

So implementation can be carried out with glmnet().

With J basis functions, one obtains uniform approximation
error O(1/J%") up till log J-factor, k* = k + 1.

HAL-MLE @, = >_;cr, Bn(j)¢; with J, non-zero

j
coefficients of its oracle MLE Qo.n = 3 e, B0,n(j)®;

satisfies (Jn/n)Y2(Qn — Qo.n)(x) =4 N(0,3(x)), while
[1Qo.n — Qolloe ~ O(L/J5").

By selecting J,, ~ n'/(<"+1) rate equals n~
till log n-factors. HAL will do this for you.

K[k 1)



Super-efficient estimation for smooth features of
target function

Targeted
Learning

® The smoothness adaptive HAL (using cross-validation to
Mark van der select k and additive submodel D(A)(R)) will

Nima Flejazi asymptotically act like an HAL for an oracle smoothness
ko and oracle subspace D(F)(R; (d)).

® As a consequence, by undersmoothing within the oracle
subspace it will be plug-in efficient for smooth target
features w.r.t. the oracle statistical model on the data
distribution that assumes Qy € D(0)(R; (d)).

e That is, W(Qp,) is asymptotically super-efficient, and is an

example of the Adaptive MLE of (Lars van der Laan et al.,
2023).



Finite sample robust TMLE

Targeted

Learning ® The current literature on TMLE has proposed various
Mark van cer modifications of TMLE that regularize the TMLE to be
bl (effed better behaved in finite samples when the support is

limited (i.e., practical violation of positivity assumption).

® For example, in censored and causal inference literature:
adaptive truncation; regularize TMLE step by not fully
solving ElIC-equation; collaborative TMLE;
outcome-adaptive TMLE; super-efficient TMLE (adjusting
in PS for outcome regressions Qn(1, W), Qn(0, W),
beyond a possible baseline model).

® These proposed regularizations have in common that they
all concern targeted estimation of the orthogonal nuisance
function g(Pp) that is needed in targeting step, while
V(Py) = W1(Qp) only depends on certain factors of
likelihood.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Typically, these variations preserve asymptotic efficiency
but adapt the targeting step towards the data to carefully
trade-off bias reduction with variance gain.

Finite sample simulations, theoretical results such as
collaborative double robustness etc, have shown that these
regularizations are crucial for robust finite sample behavior
for poorly supported parameters.

However, we never developed a truly unifying approach
(and super-efficiency theory)!

Fortunately, Lars did: Lars van der Laan et al. (2023),
Adaptive debiased machine learning.



Limitations of Efficient Estimators such as TMLE

Targeted

il ® Due to lack of nonparametric support, if M is close to
Mark van der nonparametric, then D (o) can have very large values.
Nima Hejazi

® In that case, confidence intervals for standard TMLE will
be wide and no significant finding can be obtained.

® However if we would use plug-in HAL W(P,) (possibly
super-efficient) we might very well still find a significant
true result. Somehow, the targeting step can blow up a
good initial estimator.

® This is due to an efficient estimator to be regular along all

paths through Py, including paths that appear to be
contradicting the data.



An efficient estimator cannot adapt to structure in
the true data distribution

Targeted
Learning

® For example, suppose O = (W, A, Y) and
Mark van der V(P) = EpEp(Y | A=1,W). A plug-in HAL might end
Nima Flejazi up fitting an additive model for the regression

E(Y | A, W) that contains the true regression.

¢ An efficient estimator of W(Py) for this additive model
would be well supported and have reasonable variance.

® But an efficient estimator for a nonparametric model
protects itself against any kind of fluctuation of the data
distribution, and as a consequence carries out a bias
reduction that (asymptotically) holds up uniform in P in
a ball around Py.

® |n other words, it needs to remain asympotically unbiased
under fluctuations adding a 100 way interaction.



Targeted
Learning

Mark van der
Laan and
Nima Hejazi

Lets reset benchmarks for our estimator

e Super-efficient estimator: Suppose that we require that

our estimator of W(Py) is asymptotically linear at any

Py € M, and regular along paths through Py that stay in
an oracle model My C M, approximated by a data
adaptive submodel M, satisfying Py € M.

Then, we can construct My-super-efficient estimators that
still provide asymptotically valid confidence interval and
are still robust under perturbations of Py that stay in the
model M.

Regularized efficient estimator: If our data adaptive
model M, approximates Mg = M, let the estimator
behave as an efficient estimator under model M, that
approximates the a-priori specified model M as sample
size converges to infinity but in a way that carefully
balances finite sample bias and variance.



Why does A-TMLE work: 1) standard TMLE
analysis

Targeted
Learning

® From TMLE analysis we will have that

M:E;'Z:aa"nje.’ VY, (Pr) — Wa,(Po) behaves as (P, — Po)Djy. p,-

Nima Flejazi Therefore, under an asymptotic stability condition on M,
so that D} p, —p D)4, p, We have that it behaves as
PnDj,.p, @and is thus asymptotically normal with mean
zero and variance o3, (Po) = Po{D},, p, }*-

e Cross-fitting weakens this need for asymptotic stability.
Moreover, one might still have asymptotic normality by
standardizing by a variance estimator.

* Djy,.p, €quals the efficient influence curve of
V: My — R: i.e. we achieve the efficiency we would
achieve with TMLE if we would a priori know that
Py € M.



Why does A-TMLE work: 2) data adaptive model

bias negligible
Targe?ed
Learning o |et RM()(P7 PO) = \UMO(P) — \UMO(PO) + PODj\/lo,P.
MRS o We have

Nima Hejazi
WV, (Po) — V(Po) =
(Po,n = Po){ D, py., = Mn(Dig,py, | Tata(Po,n))}
+Rmo(Po,n, Po),

where the projection 1, projects D}, p onto tangent
space of M, at Py .



Targeted

Learning ® This is a very nice second order remainder (i.e.,
~1/2
Mark van der
Laan and OP(n ))
Nima Hejazi

® Therefore, our adaptive TMLE is asymptotically linear
estimator of W(Py) with (super-efficient) influence curve
Doy

e Since it operates as an efficient estimator of W4, (Po) it
will also be regular along any path through Py that stays
in the limit oracle model M.
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