R/Lrnr_bartMachine.R
Lrnr_bartMachine.Rd
This learner implements Bayesian Additive Regression Trees via
bartMachine (described in Kapelner and Bleich (2016)
)
and the function bartMachine
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
...
: Parameters passed to bartMachine
.
See it's documentation for details.
Kapelner A, Bleich J (2016). “bartMachine: Machine Learning with Bayesian Additive Regression Trees.” Journal of Statistical Software, 70(4), 1--40. doi:10.18637/jss.v070.i04 .
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_bilstm
,
Lrnr_caret
,
Lrnr_cv_selector
,
Lrnr_cv
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_gam
,
Lrnr_ga
,
Lrnr_gbm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_glm
,
Lrnr_grfcate
,
Lrnr_grf
,
Lrnr_gru_keras
,
Lrnr_gts
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_hts
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp_density
,
Lrnr_solnp
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
# set up ML task
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")
# fit a bartMachine model and predict from it
bartMachine_learner <- make_learner(Lrnr_bartMachine)
#> Warning: User did not specify Java RAM option, and this learner often fails with the default RAM of 500MB,
#> so setting that now as `options(java.parameters = '-Xmx2500m')`.
#>
#> Note that Xmx parameter's upper limit is system dependent
#> (e.g., 32bit Windows will fail to work with anything much largerthan 1500m),
#> so ideally this option should be specified by the user.
bartMachine_fit <- bartMachine_learner$train(task)
preds <- bartMachine_fit$predict()