This learner augments a set of screened covariates with covariates that should be included by default, even if the screener did not select them.
R6Class
object.
Learner object with methods for training and prediction. See
Lrnr_base
for documentation on learners.
screener
An instantiated screener.
default_covariates
Vector of covariate names to be automatically added to the vector selected by the screener, regardless of whether or not these covariates were selected by the screener.
...
Other parameters passed to screener
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_bilstm
,
Lrnr_caret
,
Lrnr_cv_selector
,
Lrnr_cv
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_gam
,
Lrnr_ga
,
Lrnr_gbm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_glm
,
Lrnr_grfcate
,
Lrnr_grf
,
Lrnr_gru_keras
,
Lrnr_gts
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_hts
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp_density
,
Lrnr_solnp
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(data.table)
# load example data
data(cpp_imputed)
setDT(cpp_imputed)
cpp_imputed[, parity_cat := factor(ifelse(parity < 4, parity, 4))]
#> subjid agedays wtkg htcm lencm bmi waz haz whz
#> 1: 1 1 4.621 55 55 15.27603 2.3800000 2.6100000 0.19
#> 2: 1 366 14.500 79 79 23.23346 3.8400000 1.3500000 4.02
#> 3: 2 1 3.345 51 51 12.86044 0.0600000 0.5000000 -0.64
#> 4: 2 366 8.400 73 73 15.76281 -1.2700000 -1.1700000 -0.96
#> 5: 2 2558 19.100 114 0 14.69683 -1.3727316 -1.4664795 0.00
#> ---
#> 1437: 500 1 3.629 52 52 13.42086 0.8900000 1.4400000 -0.49
#> 1438: 500 366 10.900 77 77 18.38421 1.5700000 1.1500000 1.47
#> 1439: 500 2558 26.300 126 0 16.56589 0.9932827 0.9455342 0.00
#> 1440: 501 1 3.232 46 46 15.27410 -0.1800000 -2.1400000 2.27
#> 1441: 501 366 9.700 77 77 16.36026 0.0400000 0.5100000 -0.24
#> baz siteid sexn sex feedingn feeding gagebrth birthwt birthlen
#> 1: 1.35 5 1 Male 90 Unknown 287 4621 55
#> 2: 3.89 5 1 Male 90 Unknown 287 4621 55
#> 3: -0.43 5 1 Male 90 Unknown 280 3345 51
#> 4: -0.80 5 1 Male 90 Unknown 280 3345 51
#> 5: 0.00 5 1 Male 90 Unknown 280 3345 51
#> ---
#> 1437: 0.08 5 2 Female 90 Unknown 287 3629 52
#> 1438: 1.30 5 2 Female 90 Unknown 287 3629 52
#> 1439: 0.00 5 2 Female 90 Unknown 287 3629 52
#> 1440: 1.35 5 1 Male 90 Unknown 287 3232 46
#> 1441: -0.33 5 1 Male 90 Unknown 287 3232 46
#> apgar1 apgar5 mage mracen mrace mmaritn mmarit meducyrs sesn
#> 1: 8 9 21 5 White 1 Married 12 50
#> 2: 8 9 21 5 White 1 Married 12 50
#> 3: 8 9 15 5 White 1 Married 0 0
#> 4: 8 9 15 5 White 1 Married 0 0
#> 5: 8 9 15 5 White 1 Married 0 0
#> ---
#> 1437: 6 9 20 5 White 1 Married 11 38
#> 1438: 6 9 20 5 White 1 Married 11 38
#> 1439: 6 9 20 5 White 1 Married 11 38
#> 1440: 5 9 19 5 White 1 Married 9 50
#> 1441: 5 9 19 5 White 1 Married 9 50
#> ses parity gravida smoked mcignum comprisk parity_cat
#> 1: Middle 1 1 0 0 none 1
#> 2: Middle 1 1 0 0 none 1
#> 3: . 0 0 1 35 none 0
#> 4: . 0 0 1 35 none 0
#> 5: . 0 0 1 35 none 0
#> ---
#> 1437: Lower-middle 0 0 1 10 none 0
#> 1438: Lower-middle 0 0 1 10 none 0
#> 1439: Lower-middle 0 0 1 10 none 0
#> 1440: Middle 1 1 0 0 none 1
#> 1441: Middle 1 1 0 0 none 1
covars <- c(
"apgar1", "apgar5", "parity_cat", "gagebrth", "mage", "meducyrs",
"sexn"
)
outcome <- "haz"
# create sl3 task
task <- sl3_Task$new(data.table::copy(cpp_imputed),
covariates = covars,
outcome = outcome
)
screener_cor <- make_learner(
Lrnr_screener_correlation,
type = "rank",
num_screen = 2
)
screener_augment <- Lrnr_screener_augment$new(screener_cor, covars)
screener_fit <- screener_augment$train(task)
selected <- screener_fit$fit_object$selected
screener_selected <- screener_fit$fit_object$screener_selected