This learner provides fitting procedures for building regression models thru
the spline regression techniques described in
Friedman (1991)
and
Friedman (1993)
, via earth and the function
earth
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
degree
: A numeric
specifying the maximum degree of
interactions to be used in the model. This defaults to 2, specifying
up through one-way interaction terms. Note that this differs from the
default of earth
.
penalty
: Generalized Cross Validation (GCV) penalty per knot.
Defaults to 3 as per the recommendation for degree
> 1 in the
documentation of earth
. Special values (for use
by knowledgeable users): The value 0 penalizes only terms, not knots.
The value -1 translates to no penalty.
pmethod
: Pruning method, defaulting to "backward"
. Other
options include "none"
, "exhaustive"
, "forward"
,
"seqrep"
, "cv"
.
nfold
: Number of cross-validation folds. The default is 0, for no
cross-validation.
ncross
: Only applies if nfold
> 1, indicating the number
of cross-validation rounds. Each cross-validation has nfold
folds. Defaults to 1.
minspan
: Minimum number of observations between knots.
endspan
: Minimum number of observations before the first and
after the final knot.
...
: Other parameters passed to earth
. See
its documentation for details.
Friedman JH (1991).
“Multivariate adaptive regression splines.”
The Annals of Statistics, 1--67.
Friedman JH (1993).
“Fast MARS.”
Stanford University.
https://statistics.stanford.edu/sites/g/files/sbiybj6031/f/LCS%20110.pdf.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_bilstm
,
Lrnr_caret
,
Lrnr_cv_selector
,
Lrnr_cv
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_expSmooth
,
Lrnr_gam
,
Lrnr_ga
,
Lrnr_gbm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_glm
,
Lrnr_grfcate
,
Lrnr_grf
,
Lrnr_gru_keras
,
Lrnr_gts
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_hts
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp_density
,
Lrnr_solnp
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed)
covars <- c(
"apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn"
)
outcome <- "haz"
task <- sl3_Task$new(cpp_imputed,
covariates = covars,
outcome = outcome
)
# fit and predict from a MARS model
earth_lrnr <- make_learner(Lrnr_earth)
earth_fit <- earth_lrnr$train(task)
earth_preds <- earth_fit$predict(task)