This learner provides fitting procedures for models via non-negative linear
least squares regression, using nnls package's
nnls
function.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
convex = FALSE
: Normalize the coefficients to be a convex
combination.
...
: Other parameters passed to nnls
.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_bilstm
,
Lrnr_caret
,
Lrnr_cv_selector
,
Lrnr_cv
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_gam
,
Lrnr_ga
,
Lrnr_gbm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_glm
,
Lrnr_grfcate
,
Lrnr_grf
,
Lrnr_gru_keras
,
Lrnr_gts
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_hts
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp_density
,
Lrnr_solnp
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")
lrnr_nnls <- make_learner(Lrnr_nnls)
nnls_fit <- lrnr_nnls$train(task)
nnls_preds <- nnls_fit$predict()
# NNLS is commonly used as a metalearner in a super learner (i.e., Lrnr_sl)
lrnr_glm <- make_learner(Lrnr_glm)
lrnr_glmnet <- Lrnr_glmnet$new()
lrnr_mean <- Lrnr_mean$new()
learners <- c(lrnr_glm, lrnr_glmnet, lrnr_mean)
names(learners) <- c("glm", "lasso", "mean") # optional, renaming learners
simple_learner_stack <- make_learner(Stack, learners)
sl <- Lrnr_sl$new(learners = simple_learner_stack, metalearner = lrnr_nnls)
sl_fit <- sl$train(task)
sl_preds <- sl_fit$predict()