This learner provides feed-forward neural networks with a single hidden layer, and for multinomial log-linear models.
R6Class object.
Learner object with methods for both training and prediction. See
Lrnr_base for documentation on learners.
formulaA formula of the form class ~ x1 + x2 + ...
weights(case) weights for each example – if missing defaults to 1
sizenumber of units in the hidden layer. Can be zero if there are skip-layer units.
entropyswitch for entropy (= maximum conditional likelihood) fitting. Default by least-squares.
decayparameter for weight decay. Default 0.
maxitmaximum number of iterations. Default 100.
linoutswitch for linear output units. Default logistic output units.
...Other parameters passed to
nnet.
Individual learners have their own sets of parameters. Below is a list of shared parameters, implemented by Lrnr_base, and shared
by all learners.
covariatesA character vector of covariates. The learner will use this to subset the covariates for any specified task
outcome_typeA variable_type object used to control the outcome_type used by the learner. Overrides the task outcome_type if specified
...All other parameters should be handled by the invidual learner classes. See the documentation for the learner class you're instantiating
Other Learners:
Custom_chain,
Lrnr_HarmonicReg,
Lrnr_arima,
Lrnr_bartMachine,
Lrnr_base,
Lrnr_bayesglm,
Lrnr_bilstm,
Lrnr_caret,
Lrnr_cv_selector,
Lrnr_cv,
Lrnr_dbarts,
Lrnr_define_interactions,
Lrnr_density_discretize,
Lrnr_density_hse,
Lrnr_density_semiparametric,
Lrnr_earth,
Lrnr_expSmooth,
Lrnr_gam,
Lrnr_ga,
Lrnr_gbm,
Lrnr_glm_fast,
Lrnr_glm_semiparametric,
Lrnr_glmnet,
Lrnr_glmtree,
Lrnr_glm,
Lrnr_grfcate,
Lrnr_grf,
Lrnr_gru_keras,
Lrnr_gts,
Lrnr_h2o_grid,
Lrnr_hal9001,
Lrnr_haldensify,
Lrnr_hts,
Lrnr_independent_binomial,
Lrnr_lightgbm,
Lrnr_lstm_keras,
Lrnr_mean,
Lrnr_multiple_ts,
Lrnr_multivariate,
Lrnr_nnls,
Lrnr_optim,
Lrnr_pca,
Lrnr_pkg_SuperLearner,
Lrnr_polspline,
Lrnr_pooled_hazards,
Lrnr_randomForest,
Lrnr_ranger,
Lrnr_revere_task,
Lrnr_rpart,
Lrnr_rugarch,
Lrnr_screener_augment,
Lrnr_screener_coefs,
Lrnr_screener_correlation,
Lrnr_screener_importance,
Lrnr_sl,
Lrnr_solnp_density,
Lrnr_solnp,
Lrnr_stratified,
Lrnr_subset_covariates,
Lrnr_svm,
Lrnr_tsDyn,
Lrnr_ts_weights,
Lrnr_xgboost,
Pipeline,
Stack,
define_h2o_X(),
undocumented_learner
set.seed(123)
# load example data
data(cpp_imputed)
covars <- c("bmi", "parity", "mage", "sexn")
outcome <- "haz"
# create sl3 task
task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome)
# train neural networks and make predictions
lrnr_nnet <- Lrnr_nnet$new(linout = TRUE, size = 10, maxit = 1000)
fit <- lrnr_nnet$train(task)
#> # weights: 61
#> initial value 3473.327147
#> iter 10 value 2332.708133
#> iter 20 value 2285.802094
#> iter 30 value 2259.282969
#> iter 40 value 2186.037648
#> iter 50 value 2163.163175
#> iter 60 value 2158.274072
#> iter 70 value 2157.252818
#> iter 80 value 2153.548324
#> iter 90 value 2147.689763
#> iter 100 value 2140.508801
#> iter 110 value 2136.151335
#> iter 120 value 2131.667979
#> iter 130 value 2127.812539
#> iter 140 value 2126.292145
#> iter 150 value 2121.169605
#> iter 160 value 2119.921691
#> iter 170 value 2117.912191
#> iter 180 value 2116.976429
#> iter 190 value 2110.064796
#> iter 200 value 2105.265439
#> iter 210 value 2090.487599
#> iter 220 value 2083.288260
#> iter 230 value 2078.431944
#> iter 240 value 2075.836591
#> iter 250 value 2072.891518
#> iter 260 value 2069.692797
#> iter 270 value 2067.111192
#> iter 280 value 2065.639707
#> iter 290 value 2064.105394
#> iter 300 value 2059.875667
#> iter 310 value 2059.346266
#> iter 320 value 2059.315552
#> iter 330 value 2059.104485
#> final value 2059.103001
#> converged
preds <- fit$predict(task)