Stratify learner fits by a single variable
R6Class
object.
Learner object with methods for training and prediction. See
Lrnr_base
for documentation on learners.
learner="learner"
An initialized Lrnr_* object.
variable_stratify="variable_stratify"
character
giving
the variable in the covariates on which to stratify. Supports only
variables with discrete levels coded as numeric
.
...
Other parameters passed directly to
learner$train
. See its documentation for details.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_bilstm
,
Lrnr_caret
,
Lrnr_cv_selector
,
Lrnr_cv
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_gam
,
Lrnr_ga
,
Lrnr_gbm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_glm
,
Lrnr_grfcate
,
Lrnr_grf
,
Lrnr_gru_keras
,
Lrnr_gts
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_hts
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp_density
,
Lrnr_solnp
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
library(data.table)
# load example data set
data(cpp_imputed)
setDT(cpp_imputed)
# use covariates of intest and the outcome to build a task object
covars <- c("apgar1", "apgar5", "sexn")
task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = "haz")
hal_lrnr <- Lrnr_hal9001$new(fit_control = list(n_folds = 3))
stratified_hal <- Lrnr_stratified$new(
learner = hal_lrnr,
variable_stratify = "sexn"
)
# stratified learner
set.seed(123)
stratified_hal_fit <- stratified_hal$train(task)
stratified_prediction <- stratified_hal_fit$predict(task = task)