This learner uses glmtree
from partykit to fit
recursive partitioning and regression trees in a generalized linear model.
R6Class
object.
Learner object with methods for training and prediction. See
Lrnr_base
for documentation on learners.
formula
: An optional object of class formula
(or one that
can be coerced to that class), which a symbolic description of the
generalized linear model to be fit. If not specified a main terms
regression model will be supplied, with each covariate included as
a term. Please consult glmtree
documentation
for more information on its use of formula
, and for a
description on formula
syntax consult the details of the
glm
documentation.
...
: Other parameters passed to
mob_control
or glmtree
that are not already specified in the sl3_Task
. See its
documentation for details.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_bilstm
,
Lrnr_caret
,
Lrnr_cv_selector
,
Lrnr_cv
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_gam
,
Lrnr_ga
,
Lrnr_gbm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glm
,
Lrnr_grfcate
,
Lrnr_grf
,
Lrnr_gru_keras
,
Lrnr_gts
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_hts
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp_density
,
Lrnr_solnp
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(cpp_imputed)
# create task for prediction
cpp_task <- sl3_Task$new(
data = cpp_imputed,
covariates = c("bmi", "parity", "mage", "sexn"),
outcome = "haz"
)
# initialization, training, and prediction with the defaults
glmtree_lrnr <- Lrnr_glmtree$new()
glmtree_fit <- glmtree_lrnr$train(cpp_task)
glmtree_preds <- glmtree_fit$predict()